Strong solutions for a fluid structure interaction system

[1]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[2]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[3]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[4]  Irena Lasiecka,et al.  Sharp Regularity Theory for Elastic and Thermoelastic Kirchoff Equations with Free Boundary Conditions , 2000 .

[5]  Luis Vega,et al.  Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .

[6]  M. Horn Sharp trace regularity for the solutions of the equations of dynamic elasticity , 1996 .

[7]  R. Temam Navier-Stokes Equations , 1977 .

[8]  R. Triggiani,et al.  Uniform stabilization of the wave equation with dirichlet-feedback control without geometrical conditions , 1992 .

[9]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[10]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[11]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[12]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[13]  Irena Lasiecka,et al.  Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System , 2008 .

[14]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[15]  Igor Kukavica,et al.  Strong solutions to a nonlinear fluid structure interaction system , 2009 .