Optical Applications of Bacteriorhodopsin and its mutated variants

[1]  A. Rubin,et al.  Effects of electric field on the photocycle of bacteriorhodopsin , 1983 .

[2]  A. Yariv,et al.  Associative memories based on message-bearing optical modes in phase-conjugate resonators. , 1986, Optics letters.

[3]  D. Oesterhelt,et al.  Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. , 1983, Annales de microbiologie.

[4]  N. Hampp,et al.  Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering. , 1991, Optics letters.

[5]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[6]  E G Paek,et al.  Holographic implementation of a learning machine based on a multicategory perceptron algorithm. , 1989, Optics letters.

[7]  R. Birge Photophysics and molecular electronic applications of the rhodopsins. , 1990, Annual review of physical chemistry.

[8]  H. Khorana,et al.  Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[9]  N. Hampp,et al.  Bacteriorhodopsin wildtype and variant aspartate-96 --> aspargine as reversible holographic media. , 1990, Biophysical journal.

[10]  Albert F. Lawrence,et al.  A Spectroscopic, Photocalorimetric, and Theoretical Investigation of the Quantum Efficiency of the Primary Event in Bacteriorhodopsin , 1989 .

[11]  D. Oesterhelt,et al.  Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. , 1974, Methods in enzymology.

[12]  K. Kinosita,et al.  Structure and function of bacteriorhodopsin. , 1988, Advances in biophysics.

[13]  W. Leibl,et al.  Reversed picosecond charge displacement from the photoproduct K of bacteriorhodopsin demonstrated photoelectrically , 1989 .

[14]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[15]  H. Khorana,et al.  Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Rubin,et al.  Electric field promotion of the bacteriorhodopsin BR570 to BR412 photoconversion in films of Halobacterium halobium purple membranes. , 1980, Biochimica et biophysica acta.

[17]  Jung Y. Huang,et al.  Second-harmonic generation in purple membrane−poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412 , 1989 .

[18]  J. Lehn,et al.  Supramolekulare Chemie – Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag)† , 1988 .

[19]  Dieter Oesterhelt,et al.  Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor , 1990 .

[20]  F T Hong,et al.  The bacteriorhodopsin model membrane system as a prototype molecular computing element. , 1986, Bio Systems.

[21]  B H Soffer,et al.  Associative holographic memory with feedback using phase-conjugate mirrors. , 1986, Optics letters.

[22]  Dieter Oesterhelt,et al.  The quantum yield of bacteriorhodopsin , 1990 .

[23]  R. Birge,et al.  Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. , 1990, Biochimica et biophysica acta.

[24]  D. Haarer How to tailor molecular electronics or why is nature taking the ‘soft’ approach , 1989 .