Kondo impurity on the honeycomb lattice at half-filling

We consider a Kondo-like impurity interacting with fermions on a honeycomb lattice at half-filling, as in the case of graphene. We derive from the lattice model an effective one-dimensional continuum theory which has, in general, four flavors with angular momentum mixing in the presence of internode scattering processes and six couplings in the spin-isotropic case. Under particular conditions, however, it can be reduced to a single-coupling multichannel pseudogap Kondo model. We finally calculate, for the case of the presence of an energy dependent Fermi velocity, induced by Coulomb interaction, the critical coupling in the large- N expansion, the magnetic susceptibility and the specific heat.

[1]  G. Usaj,et al.  Localized spins on graphene. , 2008, Physical review letters.

[2]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[3]  N. Peres,et al.  Localized magnetic states in graphene. , 2008, Physical review letters.

[4]  G. Baskaran,et al.  Tuning Kondo physics in graphene with gate voltage , 2007, 0705.0257.

[5]  P. Thalmeier,et al.  Reentrant Kondo effect in Landau-quantized graphene: Influence of the chemical potential , 2007, 0705.1934.

[6]  F. Guinea,et al.  Orthogonality catastrophe and Kondo effect in graphene , 2007, 0705.0522.

[7]  R. Asgari,et al.  Graphene: A pseudochiral Fermi liquid , 2007, 0704.3786.

[8]  Saeed Saremi,et al.  Quantum critical point in the Kondo-Heisenberg model on the honeycomb lattice , 2006, cond-mat/0610273.

[9]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[10]  M. Vojta,et al.  Phase transitions in the pseudogap Anderson and Kondo models: Critical dimensions, renormalization group, and local-moment criticality , 2004, cond-mat/0408543.

[11]  M. Vojta,et al.  Upper critical dimension in a quantum impurity model:Critical theory of the asymmetric pseudogap Kondo problem , 2003, cond-mat/0309262.

[12]  M. Vojta,et al.  Kondo effect of impurity moments in d-wave superconductors: Quantum phase transition and spectral properties , 2001, cond-mat/0108171.

[13]  F. Guinea,et al.  Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction , 1998, cond-mat/9807130.

[14]  K. Ingersent,et al.  Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems , 1998, cond-mat/9803256.

[15]  C. Cassanello,et al.  Screening of magnetic impurities in d_x^2-y^2 wave superconductors , 1997, cond-mat/9704011.

[16]  Ingersent Behavior of magnetic impurities in gapless Fermi systems. , 1996, Physical review. B, Condensed matter.

[17]  Fradkin,et al.  Kondo effect in flux phases. , 1995, Physical review. B, Condensed matter.

[18]  F. Guinea,et al.  Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach) , 1993, hep-th/9311105.

[19]  Alex C. Hewson,et al.  The Kondo Problem to Heavy Fermions , 1993 .

[20]  M. Springford The Kondo problem to heavy fermions , 1993 .

[21]  A. Hewson,et al.  The Kondo Problem to Heavy Fermions: Addendum , 1993 .

[22]  E. Fradkin,et al.  Phase transitions in gapless Fermi systems with magnetic impurities. , 1990, Physical review letters.

[23]  D. Newns,et al.  On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique , 1983 .

[24]  P. Anderson A poor man's derivation of scaling laws for the Kondo problem , 1970 .