The power of adaptive algorithms for functions with singularities

Abstract.This is an overview of recent results on complexity and optimality of adaptive algorithms for integrating and approximating scalar piecewise r-smooth functions with unknown singular points. We provide adaptive algorithms that use at most n function samples and have the worst case errors proportional to n−r for functions with at most one unknown singularity. This is a tremendous improvement over nonadaptive algorithms whose worst case errors are at best proportional to n−1 for integration and n−1/p for the Lp approximation problem. For functions with multiple singular points the adaptive algorithms cease to dominate the nonadaptive ones in the worst case setting. Fortunately, they regain their superiority in the asymptotic setting. Indeed, they yield convergence of order n−r for piecewise r-smooth functions with an arbitrary (unknown but finite) number of singularities. None of these results hold for the L∞ approximation. However, they hold for the Skorohodmetric, which we argue to be more appropriate than L∞ for dealing with discontinuous functions. Numerical test results and possible extensions are also discussed.

[1]  Grzegorz W. Wasilkowski,et al.  The power of adaption for approximating functions with singularities , 2008, Math. Comput..

[2]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[3]  Henryk Wozniakowski,et al.  A general theory of optimal algorithms , 1980, ACM monograph series.

[4]  Leszek Plaskota,et al.  Noisy information and computational complexity , 1996 .

[5]  Pawel Przybylowicz,et al.  Optimal adaptive solution of initial-value problems with unknown singularities , 2008, J. Complex..

[6]  A. Skorokhod Limit Theorems for Stochastic Processes , 1956 .

[7]  Grzegorz W. Wasilkowski,et al.  Optimal designs for weighted approximation and integration of stochastic processes on [0, infinity) , 2004, J. Complex..

[8]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[9]  David Levin,et al.  Approximating piecewise-smooth functions , 2010 .

[10]  Grzegorz W. Wasilkowski,et al.  Complexity of Weighted Approximation over R , 2000 .

[11]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .

[12]  John R. Rice,et al.  A Metalgorithm for Adaptive Quadrature , 1975, JACM.

[13]  Grzegorz W. Wasilkowski,et al.  Adaption allows efficient integration of functions with unknown singularities , 2005, Numerische Mathematik.

[14]  Grzegorz W. Wasilkowski,et al.  On the power of adaptive information for functions with singularities , 1992 .

[15]  Nira Dyn,et al.  Interpolation and Approximation of Piecewise Smooth Functions , 2005, SIAM J. Numer. Anal..

[16]  Leszek Plaskota,et al.  Worst Case Complexity of Problems with Random Information Noise , 1996, J. Complex..

[17]  Grzegorz W. Wasilkowski,et al.  Uniform Approximation of Piecewise r-Smooth and Globally Continuous Functions , 2008, SIAM J. Numer. Anal..

[18]  Nira Dyn,et al.  Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques , 2008 .

[19]  H. Woxniakowski Information-Based Complexity , 1988 .

[20]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[21]  Leszek Plaskota How to Benefit from Noise , 1996, J. Complex..

[22]  Eitan Tadmor,et al.  Filters, mollifiers and the computation of the Gibbs phenomenon , 2007, Acta Numerica.

[23]  Christopher A. Sikorski Optimal solution of nonlinear equations , 1985, J. Complex..

[24]  Erich Novak,et al.  On the Power of Adaption , 1996, J. Complex..

[25]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[26]  G W Wasilowski,et al.  Information of varying cardinality , 1986 .

[27]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[28]  James N. Lyness,et al.  Notes on the Adaptive Simpson Quadrature Routine , 1969, J. ACM.

[29]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[30]  Martin Vetterli,et al.  Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.

[31]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[32]  Knut S. Eckhoff Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions , 1995 .

[33]  David R. Kincaid,et al.  Numerical mathematics and computing , 1980 .

[34]  A. Harten ENO schemes with subcell resolution , 1989 .

[35]  Knut S. Eckhoff On a high order numerical method for functions with singularities , 1998, Math. Comput..

[36]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[37]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[38]  W. M. McKeeman,et al.  Algorithm 145: Adaptive numerical integration by Simpson's rule , 1962, Communications of the ACM.

[39]  A. Ralston A first course in numerical analysis , 1965 .

[40]  Jacques Liandrat,et al.  A fully adaptive multiresolution scheme for image processing , 2007, Math. Comput. Model..

[41]  Shlomo Engelberg,et al.  Recovery of Edges from Spectral Data with Noise - A New Perspective , 2007, SIAM J. Numer. Anal..