β-Cell death during progression to diabetes

[1]  N. Welsh,et al.  Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. Ziv,et al.  Irreversibility of nutritionally induced NIDDM in Psammomys obesus is related to beta-cell apoptosis. , 1999, Pancreas.

[3]  N. Morgan,et al.  Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1beta and Fas ligation. , 1998, Diabetes.

[4]  M. Raff,et al.  Programmed Cell Death in Animal Development , 1997, Cell.

[5]  E. Cerasi,et al.  Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. , 1999, Diabetes.

[6]  L. Bouwens,et al.  Sensitivity of human pancreatic islets to peroxynitrite‐induced cell dysfunction and death , 1996, FEBS letters.

[7]  R. Flavell,et al.  Local expression of TNFalpha in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. , 1998, Immunity.

[8]  Simeon I. Taylor,et al.  Deconstructing Type 2 Diabetes , 1999, Cell.

[9]  A. Strasser,et al.  Transgenic overexpression of human Bcl-2 in islet beta cells inhibits apoptosis but does not prevent autoimmune destruction. , 2000, International immunology.

[10]  E. Unanue,et al.  Nitric oxide production in islets from nonobese diabetic mice: aminoguanidine-sensitive and -resistant stages in the immunological diabetic process. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Raff,et al.  Large-scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor. , 1993, Development.

[12]  M. Kurrer,et al.  Beta cell apoptosis in T cell-mediated autoimmune diabetes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Harty,et al.  Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. , 2000, Science.

[14]  Y. Matsuzawa,et al.  Requirement of Fas for the Development of Autoimmune Diabetes in Nonobese Diabetic Mice , 1997, The Journal of experimental medicine.

[15]  J. Petrik,et al.  Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. , 1998, Endocrinology.

[16]  Francesco Cecconi,et al.  Apaf1 (CED-4 Homolog) Regulates Programmed Cell Death in Mammalian Development , 1998, Cell.

[17]  D. Harlan,et al.  A mouse CD8 T cell-mediated acute autoimmune diabetes independent of the perforin and Fas cytotoxic pathways: possible role of membrane TNF. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Janeway,et al.  CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells , 1996, The Journal of experimental medicine.

[19]  P. Parham Intolerable secretion in tolerant transgenic mice , 1988, Nature.

[20]  J. Nerup,et al.  Protection of insulin-producing RINm5F cells against cytokine-mediated toxicity through overexpression of antioxidant enzymes. , 2000, Diabetes.

[21]  G. Melino,et al.  High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. , 2001, Diabetes.

[22]  M. Mcdaniel,et al.  Interleukin-1 beta-induced formation of EPR-detectable iron-nitrosyl complexes in islets of Langerhans. Role of nitric oxide in interleukin-1 beta-induced inhibition of insulin secretion. , 1991, The Journal of biological chemistry.

[23]  H. Thomas,et al.  Virus-induced autoimmune diabetes: most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes. , 2000, Diabetes.

[24]  D. Roopenian,et al.  Identification of a CD8 T Cell That Can Independently Mediate Autoimmune Diabetes Development in the Complete Absence of CD4 T Cell Helper Functions1 , 2000, The Journal of Immunology.

[25]  C. Carnaud,et al.  Accelerated β-cell Destruction in Adoptively Transferred Autoimmune Diabetes Correlates With an Increased Expression of the Genes Coding for TNF-α and Granzyme A in the Intra-Islet Infiltrates , 1995, Diabetes.

[26]  B. Beutler,et al.  The role of tumor necrosis factor in health and disease. , 1999, The Journal of rheumatology. Supplement.

[27]  J. Bach,et al.  Insulin-dependent diabetes mellitus as an autoimmune disease. , 1994, Endocrine reviews.

[28]  C. Benoist,et al.  Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? , 2001, Nature Immunology.

[29]  J. Corbett,et al.  Evidence that beta cell death in the nonobese diabetic mouse is Fas independent. , 1999, Journal of immunology.

[30]  P. Gruss,et al.  Interdigital cell death can occur through a necrotic and caspase-independent pathway , 1999, Current Biology.

[31]  D. Ron,et al.  Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. , 2001, Molecular cell.

[32]  M. White,et al.  Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling , 1999, Nature Genetics.

[33]  K. Docherty,et al.  Glucose Stimulates the Activity of the Guanine Nucleotide-exchange Factor eIF-2B in Isolated Rat Islets of Langerhans (*) , 1996, The Journal of Biological Chemistry.

[34]  Xiaodong Wang,et al.  Cytochrome c Deficiency Causes Embryonic Lethality and Attenuates Stress-Induced Apoptosis , 2000, Cell.

[35]  Keisuke Kuida,et al.  Reduced Apoptosis and Cytochrome c–Mediated Caspase Activation in Mice Lacking Caspase 9 , 1998, Cell.

[36]  J. Lakey,et al.  Human pancreatic islet beta-cell destruction by cytokines is independent of nitric oxide production. , 1994, The Journal of clinical endocrinology and metabolism.

[37]  M. Mcdaniel,et al.  Intraislet release of interleukin 1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide synthase , 1995, The Journal of experimental medicine.

[38]  N. Sarvetnick,et al.  Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin-dependent diabetes mellitus. , 1999, Journal of immunology.

[39]  F. Huang,et al.  A Discrete Subpopulation of Dendritic Cells Transports Apoptotic Intestinal Epithelial Cells to T Cell Areas of Mesenteric Lymph Nodes , 2000, The Journal of experimental medicine.

[40]  J. Davoust,et al.  Processing of engulfed apoptotic bodies yields T cell epitopes. , 1997, Journal of immunology.

[41]  J. Nerup,et al.  Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic beta-cell cytotoxicity. , 1987, Journal of immunology.

[42]  H. Thomas,et al.  Beta cell destruction in the development of autoimmune diabetes in the non‐obese diabetic (NOD) mouse , 2000, Diabetes/metabolism research and reviews.

[43]  G. Stassi,et al.  Nitric Oxide Primes Pancreatic β Cells for Fas-mediated Destruction in Insulin-dependent Diabetes Mellitus , 1997, The Journal of experimental medicine.

[44]  C. Janeway,et al.  The Role of Fas in Autoimmune Diabetes , 1997, Cell.

[45]  Y. Kim,et al.  Apoptosis of pancreatic β‐cells detected in accelerated diabetes of NOD mice: no role of Fas‐Fas ligand interaction in autoimmune diabetes , 1999, European journal of immunology.

[46]  A. Strasser,et al.  Mechanisms of beta cell death in diabetes: a minor role for CD95. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Glaser,et al.  Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. , 2000, Diabetes.

[48]  R. Zinkernagel,et al.  Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity , 1996, The Journal of experimental medicine.

[49]  T. Utsugi,et al.  Perforin-independent beta-cell destruction by diabetogenic CD8(+) T lymphocytes in transgenic nonobese diabetic mice. , 1999, The Journal of clinical investigation.

[50]  M. Tohyama,et al.  Activation of Caspase-12, an Endoplastic Reticulum (ER) Resident Caspase, through Tumor Necrosis Factor Receptor-associated Factor 2-dependent Mechanism in Response to the ER Stress* , 2001, The Journal of Biological Chemistry.

[51]  Junying Yuan,et al.  Cross-Talk between Two Cysteine Protease Families , 2000, The Journal of cell biology.

[52]  M. Pepys,et al.  Activation of mouse complement by different classes of mouse antibody. , 1979, Immunology.

[53]  K. Yamagata,et al.  Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. , 1993, The Journal of clinical investigation.

[54]  Keiichiro Suzuki,et al.  Apoptotic Cell Death Triggered by Nitric Oxide in Pancreatic β-Cells , 1995, Diabetes.

[55]  C. Newgard,et al.  Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1beta- induced cytotoxicity and reduces nitric oxide production. , 1998, The Journal of clinical investigation.

[56]  J. Buer,et al.  Monitoring gene expression of TNFR family members by β‐cells during development of autoimmune diabetes , 2000, European journal of immunology.

[57]  Pascal Meier,et al.  Apoptosis in development , 2000, Nature.

[58]  R. Steinman,et al.  The Induction of Tolerance by Dendritic Cells That Have Captured Apoptotic Cells , 2000, The Journal of experimental medicine.

[59]  H. von Boehmer,et al.  Autoimmune insulitis and diabetes in the absence of antigen‐specific contact between T cells and β‐islet cells , 1999, European journal of immunology.

[60]  D. Allan,et al.  Apoptosis Is the Mode of β-Cell Death Responsible for the Development of IDDM in the Nonobese Diabetic (NOD) Mouse , 1997, Diabetes.

[61]  S. Bonner-Weir,et al.  Dynamics of β-cell Mass in the Growing Rat Pancreas: Estimation With a Simple Mathematical Model , 1995, Diabetes.

[62]  L. Ellerby,et al.  Coupling Endoplasmic Reticulum Stress to the Cell Death Program , 2001, The Journal of Biological Chemistry.

[63]  T. Mak,et al.  TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes. , 1999, Journal of immunology.

[64]  J. Katz,et al.  In Autoimmune Diabetes the Transition from Benign to Pernicious Insulitis Requires an Islet Cell Response to Tumor Necrosis Factor α , 1999, The Journal of experimental medicine.

[65]  T. Mak,et al.  Apaf1 Is Required for Mitochondrial Pathways of Apoptosis and Brain Development , 1998, Cell.

[66]  Y. Matsuzawa,et al.  The NOD mouse. , 1994, Diabetes research and clinical practice.

[67]  S. Bonner-Weir,et al.  Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. , 1997, Endocrinology.

[68]  L. Matis,et al.  Significant Role for Fas in the Pathogenesis of Autoimmune Diabetes , 2000, The Journal of Immunology.

[69]  C. Sempoux,et al.  Human type 2 diabetes: morphological evidence for abnormal beta-cell function. , 2001, Diabetes.

[70]  F. Mayor,et al.  Hormonal and metabolic changes in the perinatal period. , 1985, Biology of the neonate.

[71]  D. Wegmann The immune response to islets in experimental diabetes and insulin-dependent diabetes mellitus. , 1996, Current opinion in immunology.

[72]  C. Benoist,et al.  Following a diabetogenic T cell from genesis through pathogenesis , 1993, Cell.

[73]  R. Tisch,et al.  Insulin-Dependent Diabetes Mellitus , 1996, Cell.

[74]  M. Mattéi,et al.  Genetic control of diabetes progression. , 1997, Immunity.

[75]  H. Pircher,et al.  Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice , 1991, Cell.

[76]  E. Leiter,et al.  Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. , 1997, Journal of immunology.

[77]  B. Zhivotovsky,et al.  Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration. , 1998, The Journal of biological chemistry.

[78]  Myung-Shik Lee,et al.  Inhibition of Autoimmune Diabetes by Fas Ligand: The Paradox Is Solved1 , 2000, The Journal of Immunology.

[79]  R. Unger,et al.  Fatty acid-induced β cell apoptosis: A link between obesity and diabetes , 1998 .

[80]  C Benoist,et al.  T helper cell subsets in insulin-dependent diabetes. , 1995, Science.

[81]  P. Krammer,et al.  CD95's deadly mission in the immune system , 2000, Nature.

[82]  G. Lathrop,et al.  EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome , 2000, Nature Genetics.

[83]  D. Finegood,et al.  Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? , 2000, Diabetes.

[84]  M. Donath,et al.  beta-cell glucotoxicity in the Psammomys obesus model of type 2 diabetes. , 2001, Diabetes.

[85]  D. Isenberg,et al.  Apoptosis and antiphospholipid antibodies. , 1998, Seminars in arthritis and rheumatism.

[86]  C. Benoist,et al.  Initiation of Autoimmune Diabetes by Developmentally Regulated Presentation of Islet Cell Antigens in the Pancreatic Lymph Nodes , 1999, The Journal of experimental medicine.

[87]  R. Zinkernagel,et al.  Reduced Incidence and Delayed Onset of Diabetes in Perforin-deficient Nonobese Diabetic Mice , 1997, The Journal of experimental medicine.

[88]  C. Mathews,et al.  Unusual resistance of ALR/Lt mouse β cells to autoimmune destruction: Role for β cell-expressed resistance determinants , 2001 .

[89]  N. Sarvetnick,et al.  Insulin-dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma , 1988, Cell.

[90]  R. Holman,et al.  Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. , 1988, Diabetes research.

[91]  Junying Yuan,et al.  Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β , 2000, Nature.

[92]  R. Flavell,et al.  Autoimmunity without diabetes in transgenic mice expressing beta cell-specific CD86, but not CD80: parameters that trigger progression to diabetes. , 1998, Journal of immunology.

[93]  C. Sempoux,et al.  No decrease of the beta-cell mass in type 2 diabetic patients. , 2001, Diabetes.

[94]  T. Ogihara,et al.  Pancreatic β Cell–specific Expression of  Thioredoxin, an Antioxidative and Antiapoptotic Protein, Prevents Autoimmune and Streptozotocin-induced Diabetes , 1998, The Journal of experimental medicine.

[95]  R. Tisch,et al.  Effect of tumor necrosis factor alpha on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process , 1994, The Journal of experimental medicine.

[96]  S. Nagata,et al.  Constitutive activation of the Fas ligand gene in mouse lymphoproliferative disorders. , 1995, The EMBO journal.

[97]  José Luis de la Pompa,et al.  Differential Requirement for Caspase 9 in Apoptotic Pathways In Vivo , 1998, Cell.