Box-Counting Dimension of Fractal Urban Form: Stability Issues and Measurement Design

The difficulty to obtain a stable estimate of fractal dimension for stochastic fractal e.g., urban form is an unsolved issue in fractal analysis. The widely used box-counting method has three main issues: 1 ambiguities in setting up a proper box cover of the object of interest; 2 problems of limited data points for box sizes; 3 difficulty in determining the scaling range. These issues lead to unreliable estimates of fractal dimensions for urban forms, and thus cast doubt on further analysis. This paper presents a detailed discussion of these issues in the case of Beijing City. The authors propose corresponding improved techniques with modified measurement design to address these issues: 1 rectangular grids and boxes setting up a proper box cover of the object; 2 pseudo-geometric sequence of box sizes providing adequate data points to study the properties of the dimension profile; 3 generalized sliding window method helping to determine the scaling range. The authors' method is tested on a fractal image the Vicsek prefractal with known fractal dimension and then applied to real city data. The results show that a reliable estimate of box dimension for urban form can be obtained using their method.

[1]  I. Thomas,et al.  The morphology of built-up landscapes in Wallonia (Belgium): A classification using fractal indices , 2008 .

[2]  Larry D. McKay,et al.  Fractal characterization of fracture networks: An improved box-counting technique , 2007 .

[3]  Pierre Frankhauser,et al.  Fractal dimension versus density of the built-up surfaces in the periphery of Brussels , 2007 .

[4]  M. Goodchild Fractals and the accuracy of geographical measures , 1980 .

[5]  A. Tarquis,et al.  Comparison of gliding box and box-counting methods in soil image analysis , 2006 .

[6]  Michael Batty,et al.  The Morphology of Urban Land Use , 1988 .

[7]  Qian Du,et al.  An improved box-counting method for image fractal dimension estimation , 2009, Pattern Recognit..

[8]  J. Bissonette,et al.  The behavior of landscape metrics commonly used in the study of habitat fragmentation , 1998, Landscape Ecology.

[9]  Moacir P. Ponti,et al.  Microscope Volume Segmentation Improved through Non-Linear Restoration , 2010, Int. J. Nat. Comput. Res..

[10]  M Batty,et al.  Preliminary Evidence for a Theory of the Fractal City , 1996, Environment & planning A.

[11]  Apparent fractality emerging from models of random distributions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Guoqiang Shen,et al.  Fractal dimension and fractal growth of urbanized areas , 2002, Int. J. Geogr. Inf. Sci..

[13]  M. Legrand,et al.  Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe , 2007 .

[14]  Michael Batty,et al.  ON THE FRACTAL MEASUREMENT OF GEOGRAPHICAL BOUNDARIES , 2010 .

[15]  D. Schertzer,et al.  Functional Box-Counting and Multiple Elliptical Dimensions in Rain , 1987, Science.

[16]  L. Girolamo,et al.  Limitations of fractal dimension estimation algorithms with implications for cloud studies , 2006 .

[17]  J. J. Walsh,et al.  Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies , 1993 .

[18]  Antoine Saucier,et al.  Using principal component analysis to enhance the generalized multifractal analysis approach to textural segmentation: Theory and application to microresistivity well logs , 2002 .

[19]  Michael Batty,et al.  Fractal Cities: A Geometry of Form and Function , 1996 .

[20]  S. Zucker,et al.  Evaluating the fractal dimension of profiles. , 1989, Physical review. A, General physics.

[21]  Hava T. Siegelmann,et al.  Conspecific Emotional Cooperation Biases Population Dynamics: A Cellular Automata Approach , 2010, Int. J. Nat. Comput. Res..

[22]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[23]  Timotej Verbovšek,et al.  BCFD -- a Visual Basic program for calculation of the fractal dimension of digitized geological image data using a box-counting technique , 2010 .

[24]  S. Hartley,et al.  Uses and abuses of fractal methodology in ecology , 2004 .

[25]  Pierre Frankhauser,et al.  La fractalité des structures urbaines , 1994 .

[26]  Heinz-Otto Peitgen,et al.  The beauty of fractals - images of complex dynamical systems , 1986 .

[27]  Ana M. Tarquis,et al.  Multifractal analysis of the pore- and solid-phases in binary two-dimensional images of natural porous structures , 2006 .

[28]  F. Peña-Cortés,et al.  Patch size and shape and their relationship with tree and shrub species richness. , 2009 .

[29]  S. Pruess Some Remarks on the Numerical Estimation of Fractal Dimension , 1995 .

[30]  Antonio Saa,et al.  Multiscaling analysis in a structured clay soil using 2D images , 2006 .

[31]  Michael Batty,et al.  FRACTAL MEASUREMENT AND LINE GENERALIZATION , 1989 .

[32]  James M. Keller,et al.  On the Calculation of Fractal Features from Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Michael Batty,et al.  URBAN SHAPES AS FRACTALS , 1987 .

[34]  Nirupam Sarkar,et al.  An Efficient Differential Box-Counting Approach to Compute Fractal Dimension of Image , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[35]  Qian Huang,et al.  Can the fractal dimension of images be measured? , 1994, Pattern Recognit..

[36]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[37]  B. Mandelbrot The fractal geometry of nature /Revised and enlarged edition/ , 1983 .

[38]  E. R. Cohen An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1998 .

[39]  Yanguang Chen,et al.  Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals , 2010 .

[40]  L F Richardson,et al.  The problem of contiguity : An appendix to statistics of deadly quarrels , 1961 .

[41]  Jibitesh Mishra,et al.  On calculation of fractal dimension of images , 2001, Pattern Recognit. Lett..

[42]  Walter Quattrociocchi,et al.  Dealing with Interaction for Complex Systems Modelling and Prediction , 2010, Int. J. Artif. Life Res..

[43]  Keith C. Clarke,et al.  The role of spatial metrics in the analysis and modeling of urban land use change , 2005, Comput. Environ. Urban Syst..

[44]  Fern Y. Hunt Error analysis and convergence of capacity dimension algorithms , 1990 .

[45]  J. Bogaert,et al.  The Fractal Dimension as a Measure of the Quality of Habitats , 2004, Acta biotheoretica.

[46]  L. Liebovitch,et al.  A fast algorithm to determine fractal dimensions by box counting , 1989 .

[47]  Yu. A. Kuznetsov,et al.  Applied nonlinear dynamics: Analytical, computational, and experimental methods , 1996 .

[48]  N. Lam,et al.  On the Issues of Scale, Resolution, and Fractal Analysis in the Mapping Sciences* , 1992 .

[49]  Pierre Dutilleul,et al.  Advances in the implementation of the box-counting method of fractal dimension estimation , 1999, Appl. Math. Comput..

[50]  J. M. Antón,et al.  under a Creative Commons License. Nonlinear Processes in Geophysics , 2022 .

[51]  Fahima Nekka,et al.  The modified box-counting method: Analysis of some characteristic parameters , 1998, Pattern Recognit..

[52]  Hiroshi Sato,et al.  Driver Recognition on Segway , 2012, Int. J. Artif. Life Res..

[53]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[54]  Junmei Tang,et al.  Fractal Dimension of a Transportation Network and its Relationship with Urban Growth: A Study of the Dallas-Fort Worth Area , 2004 .

[55]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[56]  Local entropy characterization of correlated random microstructures , 1996, cond-mat/9611015.

[57]  Lucien Benguigui,et al.  When and Where is a City Fractal? , 2000 .

[58]  Harold Goldstein,et al.  Metropolitan area definition : a re-evaluation of concept and statistical practice , 1968 .

[59]  Tamás Vicsek,et al.  Fractal models for diffusion controlled aggregation , 1983 .