Neutron Star Population Dynamics. I. Millisecond Pulsars

We study the field millisecond pulsar (MSP) population to infer its intrinsic distribution in spin period and luminosity and to determine its spatial distribution within the Galaxy. Our likelihood analysis on data from extant surveys (22 pulsars with periods less than 20 ms) accounts for the following important selection effects: (1) the survey sensitivity as a function of direction, spin period, and sky coverage; (2) interstellar scintillation, which modulates the pulsed flux and causes a net increase in search volume of ~30%; and (3) errors in the pulsar distance scale. Adopting power-law models (with cutoffs) for the intrinsic distributions, the analysis yields a minimum-period cutoff Pmin > 0.65 ms (99% confidence), a period distribution proportional to P-2.0±0.33, and a pseudoluminosity distribution proportional to L (where Lp is the product of the flux density and the square of the distance, for Lp ≥ 1.1 mJy kpc2). We find that the column density of MSPs (uncorrected for beaming effects) is ~50+ 30−20 kpc-2 in the vicinity of the solar system. For a Gaussian model, the z scale height is 0.65+ 0.16−0.12 kpc, corresponding to the local number density 29+ 17−11 kpc-3. (For an exponential model, the scale height becomes 0.50+ 0.19−0.13 kpc, and the number density 44+ 25−16 kpc-3.) Estimates of the total number of MSPs in the disk of the Galaxy and for the associated birthrate are given. The contribution of a diffuse halo-like component (tracing the Galactic spheroid, the halo, or the globular cluster density profile) to the local number density of MSPs is limited to ≲1% of the midplane value. We consider a kinematic model for the MSP spatial distribution in which objects in the disk are kicked once at birth and then orbit in a smooth Galactic potential, becoming dynamically well-mixed. The analysis yields a column density 49+ 27−17 kpc-2 (comparable to the above), a birth z kick velocity 52+ 17−11 km s-1, and a three-dimensional velocity dispersion of ~84 km s-1. MSP velocities are smaller than those of young, long-period pulsars by about a factor of 5. The kinematic properties of the MSP population are discussed, including expected transverse motions, the occurrence of asymmetric drift, the shape of the velocity ellipsoid, and the z scale height at birth. If MSPs are long-lived, then a significant contribution to observed MSP z velocities is the result of diffusive processes that increase the scale height of old stellar populations; our best estimate of the one-dimensional velocity kick that is unique to MSP evolution is ~40 km s-1 if such diffusion is taken into account. The scale heights of millisecond pulsars and low-mass X-ray binaries are consistent, suggesting a common origin and that the primary channel for forming both classes of objects imparts only low velocities. Binaries involving a common envelope phase and a neutron star-forming supernova explosion can yield such objects, even with explosion asymmetries like those needed to provide the velocity distribution of isolated, nonspun-up radio pulsars. Future searches for MSPs may be optimized using the model results. As an example, we give the expected number of detectable MSPs per beam area and the volumes of the Galaxy sampled per beam area for a hypothetical Green Bank Telescope all sky survey. Estimates for the volume that must be surveyed to find a pulsar faster than 1.5 ms are given. We also briefly discuss how selection effects associated with fast binaries influence our results.

[1]  D. Lorimer,et al.  The parkes Southern pulsar Survey — I. Observing and data analysis systems and initial results , 1996 .

[2]  D. Nice,et al.  A Search for Millisecond Pulsars at Galactic Latitudes -50 degrees < B < -20 degrees , 1996 .

[3]  D. A. Frail,et al.  A Very Luminous Binary Millisecond Pulsar , 1995 .

[4]  S. Anderson,et al.  A high galactic latitude pulsar survey of the Arecibo sky , 1995 .

[5]  J. Cordes,et al.  A Millisecond Pulsar in a 6 Hour Orbit: PSR J0751+1807 , 1995 .

[6]  A. Fruchter,et al.  A Search for Fast Pulsars along the Galactic Plane , 1995 .

[7]  Nicholas E. White,et al.  The Galactic Distribution of Low-Mass X-Ray Binaries , 1995 .

[8]  D. Lorimer Pulsar statistics – II. The local low-mass binary pulsar population , 1995 .

[9]  D. Lorimer,et al.  PSR:J1012+5307:a 5.26-ms pulsar in a 14.5-h binary system , 1995 .

[10]  D. Nice,et al.  PSR J2019+2425 and PSR J2322+2057 and the proper motions of millisecond pulsars , 1995 .

[11]  L. Nicastro,et al.  Scintillation velocities for four millisecond pulsars , 1995 .

[12]  Andrew G. Lyne,et al.  Four new millisecond pulsars in the galactic disk , 1995 .

[13]  A. Lyne,et al.  The Proper Motion and Wind Nebula of the Nearby Millisecond Pulsar J0437-4715 , 1995 .

[14]  Thomas J. Loredo,et al.  Inferring the spatial and energy distribution of gamma-ray burst sources. 1: Methodology , 1995 .

[15]  D. Backer,et al.  Millisecond pulsars : a decade of surprise, Aspen Colorado, 3-7 January 1994 , 1995 .

[16]  F. Camilo,et al.  High-Precision Timing of PSR J1713+0747: Shapiro Delay , 1994 .

[17]  V. Kaspi,et al.  High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21 , 1994 .

[18]  D. Lorimer,et al.  High birth velocities of radio pulsars , 1994, Nature.

[19]  A. Wolszczan,et al.  Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12 , 1994, Science.

[20]  D. Lorimer,et al.  Discovery of Three Binary Millisecond Pulsars , 1994 .

[21]  S. Teukolsky,et al.  RECYCLING PULSARS TO MILLISECOND PERIODS IN GENERAL RELATIVITY , 1994 .

[22]  S. Kulkarni,et al.  The magnetic fields, ages, and original spin periods of millisecond pulsars , 1994 .

[23]  E. Phinney,et al.  Binary and Millisecond Pulsars , 1994 .

[24]  A. Fruchter,et al.  Orbital Variability in the Eclipsing Pulsar Binary PSR B1957+20 , 1993, astro-ph/9312032.

[25]  R. N. Manchester,et al.  Catalog of 558 pulsars , 1993 .

[26]  G. Vasisht,et al.  A search for pulsars at high galactic latitudes , 1993 .

[27]  D. Lorimer,et al.  Pulsar statistics: the birthrate and initial spin periods of radio pulsars , 1993 .

[28]  James M. Cordes,et al.  Pulsar distances and the galactic distribution of free electrons , 1993 .

[29]  Stuart L. Shapiro,et al.  Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State , 1993 .

[30]  P. Podsiadlowski,et al.  How young are the low-mass X-ray binaries ? Conclusions from a flux-limited sample. , 1993 .

[31]  J. Rankin Toward an Empirical Theory of Pulsar Emission. VI. The Geometry of the Conal Emission Region , 1993 .

[32]  J. Cordes,et al.  Spectroscopy of the Companion and Bow-Shock Nebula of PSR 1957+20 , 1992 .

[33]  D. Stinebring,et al.  Long-Term Pulsar Flux Monitoring and Refractive Interstellar Scintillation: 3 Years of Results , 1992 .

[34]  E. Phinney,et al.  STATISTICS OF PULSARS IN GLOBULAR CLUSTERS , 1992 .

[35]  M. Tavani,et al.  A Determination of the Radio-Luminosity Function and Relative Number of Globular Cluster Pulsars , 1992 .

[36]  D. Frail,et al.  The galactic distribution of free electrons , 1991, Nature.

[37]  J. Cordes,et al.  Interstellar scattering effects on the detection of narrow-band signals , 1991 .

[38]  D. Bhattacharya,et al.  Formation and evolution of binary and millisecond radio pulsars , 1991 .

[39]  A. Wolszczan A nearby 37.9-ms radio pulsar in a relativistic binary system , 1991, Nature.

[40]  Helen M. Johnston,et al.  On the detectability of pulsars in close binary systems , 1991 .

[41]  A. Fruchter,et al.  The integrated flux density of pulsars in globular clusters , 1990 .

[42]  D. Frail,et al.  A critical evaluation of pulsar distance measurements , 1990 .

[43]  D. Stinebring,et al.  Pulsar flux stability and refractive interstellar scintillation , 1990 .

[44]  D. Stinebring,et al.  Timing and scintillations of the millisecond pulsar 1937 + 214 , 1990 .

[45]  B. J. Rickett,et al.  Radio propagation through the turbulent interstellar plasma. , 1990 .

[46]  Bohdan Paczynski,et al.  A test of the galactic origin of gamma-ray bursts , 1990 .

[47]  J. Weisberg,et al.  Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16 , 1989 .

[48]  P. Thomas Spatial distribution and dynamics of the galactic globular cluster system , 1989 .

[49]  R. Narayan,et al.  Birthrates of Low-Mass Binary Pulsars and Low-Mass X-Ray Binaries , 1988 .

[50]  J. Cordes,et al.  Radio wave scattering in the interstellar medium , 1988 .

[51]  J. Cordes,et al.  Radio wave scattering in the interstellar medium, San Diego, Ca. 1988 , 1988 .

[52]  R. Narayan The birthrate and initial spin period of single radio pulsars , 1987 .

[53]  J. Cordes Space velocities of radio pulsars from interstellar scintillations , 1986 .

[54]  A. Lyne The Galactic population of pulsars , 1985 .

[55]  J. Cordes,et al.  Small-scale electron density turbulence in the interstellar medium. , 1985 .

[56]  D. Stinebring,et al.  Birth and evolution of neutron stars: Issues raised by millisecond pulsars; Proceedings of the eighth workshop, Green Bank, WV, June 6-8, 1984 , 1985 .

[57]  J. Bahcall K-giants and the total amount of matter near the Sun. , 1984 .

[58]  J. Rankin Toward an empirical theory of pulsar emission. I: Morphological taxonomy , 1983 .

[59]  A. Cheng,et al.  A new class of radio pulsars , 1982, Nature.

[60]  Maarten Schmidt,et al.  On the interpretation of rotation curves measured at large galactocentric distances , 1982 .

[61]  J. Ostriker,et al.  The Mass distribution within our Galaxy: A Three component model , 1981 .

[62]  M. Vivekanand,et al.  A new look at pulsar statistics — Birthrate and evidence for injection , 1981 .

[63]  E. Phinney,et al.  Analysis of the pulsar P–$\dot P$ distribution , 1981 .

[64]  John N. Bahcall,et al.  Star counts as an indicator of galactic structure and quasar evolution , 1980 .

[65]  D. Backer Pulsar average wave forms and hollow-cone beam models , 1976 .

[66]  Physics Reports , 2022 .