Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression
暂无分享,去创建一个
Johan A. K. Suykens | Bart De Moor | Kris De Brabanter | Jos De Brabanter | J. Suykens | B. Moor | J. D. Brabanter | K. D. Brabanter | K. Brabanter | J. Brabanter
[1] Changbao Wu,et al. Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .
[2] Léon Personnaz,et al. Construction of confidence intervals for neural networks based on least squares estimation , 2000, Neural Networks.
[3] S. Rice. The Distribution of the Maxima of a Random Curve , 1939 .
[4] Michael I. Jordan,et al. Regression with input-dependent noise: A Gaussian process treatment , 1998 .
[5] Paul L. Speckman,et al. Confidence bands in nonparametric regression , 1993 .
[6] P. Hall. On Bootstrap Confidence Intervals in Nonparametric Regression , 1992 .
[7] E. Mammen. Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .
[8] M. Wand,et al. Semiparametric Regression: Parametric Regression , 2003 .
[9] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[10] A. Shiryaev,et al. Probability (2nd ed.) , 1995, Technometrics.
[11] James Stephen Marron,et al. Regression smoothing parameters that are not far from their optimum , 1992 .
[12] Wolfram Burgard,et al. Most likely heteroscedastic Gaussian process regression , 2007, ICML '07.
[13] Marcin Witczak. Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems: From Analytical to Soft Computing Approaches , 2007 .
[14] Peter Tino,et al. IEEE Transactions on Neural Networks , 2009 .
[15] C. Loader,et al. Simultaneous Confidence Bands for Linear Regression and Smoothing , 1994 .
[16] Robert Tibshirani,et al. Correction: Discussion of "Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis" by C. F. J. Wu , 1988 .
[17] D. M. Titterington,et al. On confidence bands in nonparametric density estimation and regression , 1988 .
[18] N. Weber,et al. Discussion: Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .
[19] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[20] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[21] Jerome Sacks,et al. Confidence Bands for Regression Functions , 1985 .
[22] Gavin C. Cawley,et al. Estimating Predictive Variances with Kernel Ridge Regression , 2005, MLCW.
[23] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[24] W. Haerdle. Resampling for inference from curves , 1989 .
[25] Zhe Sun,et al. Cutting Plane Method for Continuously Constrained Kernel-Based Regression , 2010, IEEE Transactions on Neural Networks.
[26] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[27] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[28] George Chryssolouris,et al. Confidence interval prediction for neural network models , 1996, IEEE Trans. Neural Networks.
[29] Jianqing Fan,et al. Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .
[30] Gordon J Johnston,et al. Probabilities of maximal deviations for nonparametric regression function estimates , 1982 .
[31] Wolfgang Karl Härdle,et al. Local polynomial estimators of the volatility function in nonparametric autoregression , 1997 .
[32] Regina Y. Liu. Bootstrap Procedures under some Non-I.I.D. Models , 1988 .
[33] P. Bickel,et al. On Some Global Measures of the Deviations of Density Function Estimates , 1973 .
[34] Rudolf Beran. Discussion: Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .
[35] Wolfgang Karl Härdle,et al. Asymptotic maximal deviation of M-smoothers , 1989 .
[36] Guohua Pan,et al. Local Regression and Likelihood , 1999, Technometrics.
[37] James Davidson,et al. Implementing the wild bootstrap using a two-point distribution☆ , 2007 .
[38] M. Wand. Local Regression and Likelihood , 2001 .
[39] Christopher M. Bishop,et al. Regression with Input-Dependent Noise: A Bayesian Treatment , 1996, NIPS.
[40] Jianbo Yang,et al. An Improved Algorithm for the Solution of the Regularization Path of Support Vector Machine , 2010, IEEE Transactions on Neural Networks.
[41] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[42] Jianqing Fan,et al. Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .
[43] J. Rice. Mathematical Statistics and Data Analysis , 1988 .
[44] Alan F. Murray,et al. Confidence estimation methods for neural networks : a practical comparison , 2001, ESANN.
[45] Gavin C. Cawley,et al. Heteroscedastic kernel ridge regression , 2004, Neurocomputing.
[46] Richard A. Davis,et al. On Some Global Measures of the Deviations of Density Function Estimates , 2011 .
[47] Johan A. K. Suykens,et al. Least Squares Support Vector Machines , 2002 .
[49] Aarnout Brombacher,et al. Probability... , 2009, Qual. Reliab. Eng. Int..