A polynomial upper bound on Reidemeister moves

We prove that any diagram of the unknot with c crossings may be reduced to the trivial diagram using at most (236 c)^{11} Reidemeister moves. Moreover, every diagram in this sequence has at most (7 c)^2 crossings. We also prove a similar theorem for split links, which provides a polynomial upper bound on the number of Reidemeister moves required to transform a diagram of the link into a disconnected diagram.

[1]  A. M. Turing,et al.  Solvable and Unsolvable Problems , 1954 .

[2]  W. Haken,et al.  Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I , 1962 .

[3]  W. Haken Theorie der Normalflächen , 1961 .

[4]  Geoffrey Hemion,et al.  On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds , 1979 .

[5]  W. Floyd,et al.  Incompressible surfaces via branched surfaces , 1984 .

[6]  James A. Storer,et al.  On minimal-node-cost planar embeddings , 1984, Networks.

[7]  Ulrich Oertel,et al.  An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .

[8]  Studying links via closed braids IV: composite links and split links , 1990, math/0407403.

[9]  J. Birman,et al.  STUDYING LINKS VIA CLOSED BRAIDS I , 1992 .

[10]  William Jaco,et al.  Algorithms for the complete decomposition of a closed $3$-manifold , 1995 .

[11]  P. Cromwell Embedding knots and links in an open book I: Basic properties , 1995 .

[12]  Peter R. Cromwell,et al.  Embedding knots and links in an open book II. Bounds on arc index , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Peter R. Cromwell,et al.  Embedding knots and links in an open book III. On the braid index of satellite links , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  J. Lagarias,et al.  The number of Reidemeister moves needed for unknotting , 1998, math/9807012.

[15]  STUDYING SURFACES VIA CLOSED BRAIDS , 1998, math/9804028.

[16]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[17]  Ivan Dynnikov,et al.  Arc-presentations of links. Monotonic simplification , 2002 .

[18]  Jack Snoeyink,et al.  The Size of Spanning Disks for Polygonal Curves , 2003, Discret. Comput. Geom..

[19]  Sergei Matveev,et al.  Algorithmic Topology and Classification of 3-Manifolds , 2003 .

[20]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[21]  Joel Hass,et al.  Unknot Diagrams Requiring a Quadratic Number of Reidemeister Moves to Untangle , 2007, Discret. Comput. Geom..

[22]  A. Coward,et al.  An upper bound on Reidemeister moves , 2011, 1104.1882.

[23]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[24]  Greg Kuperberg,et al.  Knottedness is in NP, modulo GRH , 2011, ArXiv.

[25]  Louis H. Kauffman,et al.  Unknotting Unknots , 2010, Am. Math. Mon..