A polynomial upper bound on Reidemeister moves
暂无分享,去创建一个
[1] A. M. Turing,et al. Solvable and Unsolvable Problems , 1954 .
[2] W. Haken,et al. Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I , 1962 .
[3] W. Haken. Theorie der Normalflächen , 1961 .
[4] Geoffrey Hemion,et al. On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds , 1979 .
[5] W. Floyd,et al. Incompressible surfaces via branched surfaces , 1984 .
[6] James A. Storer,et al. On minimal-node-cost planar embeddings , 1984, Networks.
[7] Ulrich Oertel,et al. An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .
[8] Studying links via closed braids IV: composite links and split links , 1990, math/0407403.
[9] J. Birman,et al. STUDYING LINKS VIA CLOSED BRAIDS I , 1992 .
[10] William Jaco,et al. Algorithms for the complete decomposition of a closed $3$-manifold , 1995 .
[11] P. Cromwell. Embedding knots and links in an open book I: Basic properties , 1995 .
[12] Peter R. Cromwell,et al. Embedding knots and links in an open book II. Bounds on arc index , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Peter R. Cromwell,et al. Embedding knots and links in an open book III. On the braid index of satellite links , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] J. Lagarias,et al. The number of Reidemeister moves needed for unknotting , 1998, math/9807012.
[15] STUDYING SURFACES VIA CLOSED BRAIDS , 1998, math/9804028.
[16] Jeffrey C. Lagarias,et al. The computational complexity of knot and link problems , 1999, JACM.
[17] Ivan Dynnikov,et al. Arc-presentations of links. Monotonic simplification , 2002 .
[18] Jack Snoeyink,et al. The Size of Spanning Disks for Polygonal Curves , 2003, Discret. Comput. Geom..
[19] Sergei Matveev,et al. Algorithmic Topology and Classification of 3-Manifolds , 2003 .
[20] Oded Goldreich,et al. Computational complexity: a conceptual perspective , 2008, SIGA.
[21] Joel Hass,et al. Unknot Diagrams Requiring a Quadratic Number of Reidemeister Moves to Untangle , 2007, Discret. Comput. Geom..
[22] A. Coward,et al. An upper bound on Reidemeister moves , 2011, 1104.1882.
[23] Salil P. Vadhan,et al. Computational Complexity , 2005, Encyclopedia of Cryptography and Security.
[24] Greg Kuperberg,et al. Knottedness is in NP, modulo GRH , 2011, ArXiv.
[25] Louis H. Kauffman,et al. Unknotting Unknots , 2010, Am. Math. Mon..