Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability

[1]  Y. Pu,et al.  Enhanced energy storage density and high efficiency of lead-free Ca1-Sr Ti1-Zr O3 linear dielectric ceramics , 2019 .

[2]  Haitao Huang,et al.  Recent advances in lead-free dielectric materials for energy storage , 2019, Materials Research Bulletin.

[3]  Y. Pu,et al.  Flash sintering of barium titanate , 2019, Ceramics International.

[4]  Shujun Zhang,et al.  Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors , 2019, Journal of Materials Chemistry A.

[5]  Y. Pu,et al.  Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics , 2019, Journal of Alloys and Compounds.

[6]  X. Dong,et al.  Combining high energy efficiency and fast charge-discharge capability in novel BaTiO3-based relaxor ferroelectric ceramic for energy-storage , 2019, Ceramics International.

[7]  T. Yang,et al.  Excellent Energy Storage and Charge-discharge Performances in PbHfO3 Antiferroelectric Ceramics , 2019, Journal of the European Ceramic Society.

[8]  Bing Xie,et al.  Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics , 2019, Journal of Materials Chemistry C.

[9]  Gang Liu,et al.  Antiferroelectric-like properties in MgO-modified 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 ceramics for high power energy storage , 2018, Journal of the European Ceramic Society.

[10]  Zhongyang Cheng,et al.  Microstructure and enhanced dielectric properties of BaTiO 3 –SiO 2 nanocomposites using hydrogen treated nanoparticles , 2018, IET Nanodielectrics.

[11]  X. Dong,et al.  Enhanced Curie temperature and piezoelectric properties of (Ba 0.85 Ca 0.15 )(Zr 0.10 Ti 0.90 )O 3 lead-free ceramics after the addition of LiTaO 3 , 2018, Materials Research Bulletin.

[12]  X. Dong,et al.  Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy , 2018 .

[13]  X. Dong,et al.  Novel Sodium Niobate-Based Lead-Free Ceramics as New Environment-Friendly Energy Storage Materials with High Energy Density, High Power Density, and Excellent Stability , 2018, ACS Sustainable Chemistry & Engineering.

[14]  Geon‐Tae Hwang,et al.  High‐Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook , 2018, Advanced Functional Materials.

[15]  Jiagang Wu,et al.  Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics , 2018 .

[16]  Yongfei Cui,et al.  High Energy Storage Density and Optical Transparency of Microwave Sintered Homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 Ceramics , 2018 .

[17]  Xihong Hao,et al.  Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na 0.5 Bi 0.5 TiO 3 −0.06BaTiO 3 )−0.1NaNbO 3 ceramics , 2017 .

[18]  J. Zhai,et al.  Temperature induced high charge–discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics , 2017 .

[19]  Mupeng Zheng,et al.  High-temperature dielectrics based on (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xNaNbO3 system , 2017 .

[20]  Y. Pu,et al.  Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics , 2017 .

[21]  Zhuo Xu,et al.  Effects of La-induced phase transition on energy storage and discharge properties of PLZST ferroelectric/antiferroelectric ceramics , 2017 .

[22]  Jingfeng Li,et al.  Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance , 2017, Advanced materials.

[23]  Fei Yan,et al.  Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage , 2017 .

[24]  Zhuo Xu,et al.  Effects of phase transition on discharge properties of PLZST antiferroelectric ceramics , 2017 .

[25]  M. Lanagan,et al.  Homogeneous/Inhomogeneous‐Structured Dielectrics and their Energy‐Storage Performances , 2017, Advanced materials.

[26]  Huiqing Fan,et al.  Electric‐field induced phase transition and fatigue behaviors of (Bi0.5+x/2Na0.5‐x/2)0.94Ba0.06Ti1‐xFexO3 ferroelectrics , 2017 .

[27]  J. Zhai,et al.  Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics , 2017 .

[28]  Zhuo Xu,et al.  High energy density in silver niobate ceramics , 2016 .

[29]  Jingfeng Li,et al.  Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification , 2016 .

[30]  Jiafu Wang,et al.  Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics , 2016 .

[31]  Genshui Wang,et al.  High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics , 2016 .

[32]  Hairui Liu,et al.  Phase transition behavior, dielectric and ferroelectric properties of(1 − x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics , 2016 .

[33]  M. Lanagan,et al.  Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage , 2016 .

[34]  H. Fan,et al.  Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3 , 2016 .

[35]  W. Fei,et al.  Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics , 2016 .

[36]  X. Chen,et al.  Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering , 2015 .

[37]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[38]  Brian C. Riggs,et al.  Preparation of BaTiO3/low melting glass core–shell nanoparticles for energy storage capacitor applications , 2014 .

[39]  W. Jo,et al.  Impedance Spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 Based High‐Temperature Dielectrics , 2014 .

[40]  S. Tripathy,et al.  Dielectric and Raman spectroscopic studies of Na0.5Bi0.5TiO3-BaSnO3 ferroelectric system , 2014 .

[41]  Xihong Hao,et al.  A comprehensive review on the progress of lead zirconate-based antiferroelectric materials , 2014 .

[42]  W. Jo,et al.  High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics , 2012 .

[43]  S. K. Rout,et al.  Structure, microstructure and dielectric properties of 100−x(Bi0.5Na0.5)TiO3−x[SrTiO3] composites ceramics , 2012, Applied Physics A.

[44]  M. Cain,et al.  Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics , 2012 .

[45]  Jiadong Zang,et al.  Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective , 2012, Journal of Electroceramics.

[46]  Genshui Wang,et al.  Energy‐Storage Properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 Lead‐Free Anti‐ferroelectric Ceramics , 2011 .

[47]  R. Yimnirun,et al.  Lead-free ternary perovskite compounds with large electromechanical strains , 2011 .

[48]  W. Jo,et al.  Lead-free high-temperature dielectrics with wide operational range , 2011 .

[49]  Dragan Damjanovic,et al.  High‐Strain Lead‐free Antiferroelectric Electrostrictors , 2009 .

[50]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[51]  R. Waser,et al.  Raman scattering studies on nanocrystalline BaTiO3 Part I—isolated particles and aggregates , 2007 .

[52]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[53]  R. C. Miller,et al.  TEMPERATURE DEPENDENCE OF THE OPTICAL PROPERTIES OF FERROELECTRIC LiNbO3 AND LiTaO3 , 1966 .

[54]  Y. Pu,et al.  High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics , 2020 .

[55]  Pan Chen,et al.  Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics , 2016 .

[56]  Fei Li,et al.  Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures , 2014, Progress in Advanced Dielectrics.

[57]  Haibo Zhang,et al.  Bi1/2Na1/2TiO3–BaTiO3 based thick-film capacitors for high-temperature applications , 2014 .

[58]  V. Shvartsman,et al.  Lead-Free Relaxor Ferroelectrics , 2012 .

[59]  D. Suvorov,et al.  Sodium deficiency in Na0.5Bi0.5TiO3 , 2007 .

[60]  G. Rujijanagul,et al.  Dielectric strength of fine grained barium titanate ceramics , 1996 .