Barrier options and touch- and-out options under regular Lévy processes of exponential type

We derive explicit formulas for barrier options of European type and touchand-out options assuming that under a chosen equivalent martingale measure the stock returns follow a L evy process from a wide class, which contains Brownian Motions (BM), Normal Inverse Gaussian Processes (NIG), Hyperbolic Processes (HP) and Truncated L evy Processes (TLP), and any nite mixture of independent BM, NIG, HP and TLP. In contrast to the Gaussian case, for a barrier option, a rebate must be speci ed not only at a barrier but for all values of the stock the other side of the barrier, the reason being that trajectories of a non-Gaussian L evy process are discontinuous. We consider options with the constant or exponentially decaying rebate, and options which pay a xed rebate when the rst barrier has been crossed but the second one has not. We obtain pricing formulas by solving corresponding boundary problems for the generalized Black-Scholes equation. We use the connection between the resolvent and the in nitesimal generator of the process, the representation theorem for analytic semigroups, the Wiener-Hopf factorization method and the theory of pseudo-di erential operators.

[1]  Ken Nyholm,et al.  Inferring the private information content of trades: a regime‐switching approach , 2003 .

[2]  S. Levendorskii,et al.  Perpetual American options under Levy processes , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[3]  Ernesto Mordecki,et al.  Optimal stopping and perpetual options for Lévy processes , 2002, Finance Stochastics.

[4]  J. L. Pedersen,et al.  The minimum maximum of a continuous martingale with given initial and terminal laws , 2002 .

[5]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .

[6]  Jens Perch Nielsen,et al.  Boundary and Bias Correction in Kernel Hazard Estimation , 2001 .

[7]  C. Hansen The relation between implied and realised volatility in the Danish option and equity markets , 2001 .

[8]  Anders Rahbek,et al.  Asymptotic Likelihood Based Inference for Co‐integrated Homogenous Gaussian Diffusions , 2001 .

[9]  N. Shephard,et al.  Normal Modified Stable Processes , 2001 .

[10]  David Lando,et al.  Swap Pricing with Two-Sided Default Risk in a Rating-Based Model , 2001 .

[11]  Michael Sørensen,et al.  Simplified Estimating Functions for Diffusion Models with a High‐dimensional Parameter , 2001 .

[12]  Sergei Levendorskii,et al.  Feller processes of normal inverse Gaussian type , 2001 .

[13]  J. L. Pedersen,et al.  Discounted optimal stopping problems for the maximum process , 2000, Journal of Applied Probability.

[14]  M. Sørensen,et al.  Prediction-based estimating functions , 2000 .

[15]  N. Shephard,et al.  Econometric Analysis of Realised Volatility and Its Use in Estimating Levy Based Non-Gaussian OU Type Stochastic Volatility Models , 2000 .

[16]  Hanspeter Schmidli,et al.  Pricing catastrophe insurance products based on actually reported claims , 2000 .

[17]  Rolf Poulsen,et al.  A simple regime switching term structure model , 2000, Finance Stochastics.

[18]  Peter Løchte Jørgensen,et al.  Analytical Valuation of American-Style Asian Options , 2000 .

[19]  Tom Engsted Measures of Fit for Rational Expectations Models: A Survey , 2000 .

[20]  C. Christiansen Credit Spreads and the Term Structure of Interest Rates , 2000 .

[21]  Svetlana Boyarchenko,et al.  OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .

[22]  Nicholas M. Kiefer,et al.  Simple Robust Testing of Regression Hypotheses , 2000 .

[23]  Tom Engsted,et al.  The Danish Stock and Bond Markets: Comovement, Return Predictability and Variance Decomposition , 2000 .

[24]  E. Mammen,et al.  Yield Curve Estimation by Kernel Smoothing Methods , 2000 .

[25]  Tom Engsted,et al.  Regime shifts in the Danish term structure of interest rates , 2000 .

[26]  Tom Engsted Measuring Noise in the Permanent Income Hypothesis , 2000 .

[27]  C. Christiansen,et al.  Implied Volatility of Interest Rate Options: An Empirical Investigation of the Market Model , 1999 .

[28]  G. Peskir Designing options given the risk: the optimal Skorokhod-embedding problem , 1999 .

[29]  C. Christiansen Macroeconomic Announcement Effects on the Covariance Structure of Bond Returns , 1999 .

[30]  Anders Grosen,et al.  Fair Valuation of Life Insurance Liabilities: The Impact of Interest Rate Guarantees, Surrender Options, and Bonus Policies , 1999 .

[31]  Neil Shephard,et al.  Dynamics of Trade-by-Trade Price Movements: Decomposition and Models , 1999 .

[32]  N. Prabhala,et al.  The relation between implied and realized volatility , 1998 .

[33]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[34]  N. Kiefer,et al.  Simple Robust Testing of Hypotheses in Non-Linear Models , 1998 .

[35]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[36]  Peter Løchte Jørgensen,et al.  Exact Analytical Valuation of Bonds When Spot Interest Rates are Log-Normal , 1998 .

[37]  Tina Hviid Rydberg,et al.  An actuarial approach to option pricing under the physical measure and without market assumptions , 1998 .

[38]  T. Björk,et al.  Some system theoretic aspects of interest rate theory , 1998 .

[39]  Peter Honore,et al.  Panel-Data Estimation of Non-Linear Term-Structure Models , 1998 .

[40]  N. Shephard,et al.  Aggregation and model construction for volatility models , 1998 .

[41]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[42]  Andrew Matacz,et al.  Financial Modeling and Option Theory with the Truncated Levy Process , 1997, cond-mat/9710197.

[43]  P. Honoré Modelling Interest Rate Dynamics in a Corridor with Jump Processes , 1997 .

[44]  J. Bouchaud,et al.  Scaling in Stock Market Data: Stable Laws and Beyond , 1997, cond-mat/9705087.

[45]  M. Yor,et al.  PRICING AND HEDGING DOUBLE-BARRIER OPTIONS: A PROBABILISTIC APPROACH , 1996 .

[46]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[47]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[49]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[50]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[51]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[52]  Gerald Teschl,et al.  Functional Analysis , 2023, Texts and Readings in Mathematics.

[53]  K. Bechmann,et al.  A Regulation of Bids for Dual Class Shares. Implication: Two Shares—One Price , 2003 .

[54]  E. Eberlein,et al.  The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures , 2002 .

[55]  M. Yor,et al.  ASSET PRICES ARE BROWNIAN MOTION: ONLY IN BUSINESS TIME , 2001 .

[56]  E. Eberlein Application of Generalized Hyperbolic Lévy Motions to Finance , 2001 .

[57]  N. Shephard,et al.  Non-Gaussian OU based models and some of their uses in financial economics , 2000 .

[58]  N. Kiefer,et al.  A New Approach to the Asymptotics of HAC Robust Testing in Econometrics , 2000 .

[59]  N. Kiefer,et al.  Simulation-based Inference in Econometrics: Simulated moment methods for empirical equivalent martingale measures , 2000 .

[60]  Jr. Jonathan E. Ingersoll Digital Contracts: Simple Tools for Pricing Complex Derivatives , 2000 .

[61]  R. Wolpert Lévy Processes , 2000 .

[62]  Michael Sørensen,et al.  On asymptotics of estimating functions , 1999 .

[63]  Esben Høg A note on a representation and calculation of the long-memory Ornstein-Uhlenbeck process , 1999 .

[64]  Thomas Mikosch,et al.  Change of structure in financial time series, long range dependence and the GARCH model , 1998 .

[65]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[66]  J. Emanuel,et al.  BREAKING DOWN BARRIERS , 1996 .