A combined approach of 16S rRNA and a functional marker gene, soxB to reveal the diversity of sulphur-oxidising bacteria in thermal springs

[1]  Zhigang Yu,et al.  Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea , 2017, Front. Microbiol..

[2]  C. Young,et al.  Hydrogenophaga aquatica sp. nov., isolated from a hot spring. , 2017, International journal of systematic and evolutionary microbiology.

[3]  Jihua Liu,et al.  Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions , 2017, The ISME Journal.

[4]  J. Gore,et al.  Ecological suicide in microbes , 2017, bioRxiv.

[5]  B. Chaudhuri,et al.  Comparative analysis of microbial diversity in two hot springs of Bakreshwar, West Bengal, India , 2017, Genomics data.

[6]  Bo Yu,et al.  CDD/SPARCLE: functional classification of proteins via subfamily domain architectures , 2016, Nucleic Acids Res..

[7]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[8]  Muharni,et al.  Isolation and Phylogenetic Analysis of Thermophile Community Within Tanjung Sakti Hot Spring, South Sumatera, Indonesia , 2015 .

[9]  Rajesh Patel,et al.  Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India , 2015, Genomics data.

[10]  B. D. Pandey,et al.  | Microbiology for Minerals, Metals, Materials and the Environment | Taylor & Francis Group , 2015 .

[11]  K. Konstantinidis,et al.  Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics , 2014, PloS one.

[12]  G. Muyzer,et al.  Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker. , 2013, FEMS microbiology ecology.

[13]  Y. Kamagata,et al.  Metagenomic and Biochemical Characterizations of Sulfur Oxidation Metabolism in Uncultured Large Sausage-Shaped Bacterium in Hot Spring Microbial Mats , 2012, PloS one.

[14]  R. Amann,et al.  Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes , 2012, The ISME Journal.

[15]  S. D. Das Gupta,et al.  Whole-Genome Shotgun Sequencing of the Sulfur-Oxidizing Chemoautotroph Tetrathiobacter kashmirensis , 2011, Journal of bacteriology.

[16]  Ruiyong Zhang,et al.  A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of tengchong, yunnan, China , 2011, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[17]  Yongxia Guo,et al.  Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor , 2011, Applied Microbiology and Biotechnology.

[18]  J. Imhoff,et al.  Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. , 2010, FEMS microbiology ecology.

[19]  B. Dam,et al.  Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. , 2009, FEMS microbiology reviews.

[20]  Mehdi Nemati,et al.  Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries , 2009 .

[21]  L. Whyte,et al.  Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic , 2008, Applied and Environmental Microbiology.

[22]  Y. Shouche,et al.  Isolation and characterization of sulphate-reducing bacteria Desulfovibrio vulgaris from Vajreshwari thermal springs in Maharashtra, India , 2008 .

[23]  J. Imhoff,et al.  Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system. , 2007, Environmental microbiology.

[24]  J. Kuever,et al.  Molecular Analysis of the Diversity of Sulfate-Reducing and Sulfur-Oxidizing Prokaryotes in the Environment, Using aprA as Functional Marker Gene , 2007, Applied and Environmental Microbiology.

[25]  C. Jeon,et al.  Hydrogenophaga caeni sp. nov., isolated from activated sludge. , 2007, International journal of systematic and evolutionary microbiology.

[26]  D. Brune,et al.  Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum , 2006, Molecular microbiology.

[27]  M. Madigan,et al.  Isolation, Characterization, and Ecology of Cold-Active, Chemolithotrophic, Sulfur-Oxidizing Bacteria from Perennially Ice-Covered Lake Fryxell, Antarctica , 2006, Applied and Environmental Microbiology.

[28]  Yohey Suzuki,et al.  Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emend , 2006, International journal of systematic and evolutionary microbiology.

[29]  M. Scranton,et al.  � 2006, by the American Society of Limnology and Oceanography, Inc. Vertical distributions of thiosulfate and sulfite in the Cariaco Basin , 2022 .

[30]  C. Friedrich,et al.  Prokaryotic sulfur oxidation. , 2005, Current opinion in microbiology.

[31]  J. Kristjánsson,et al.  Investigation of the Microbial Ecology of Intertidal Hot Springs by Using Diversity Analysis of 16S rRNA and Chitinase Genes , 2005, Applied and Environmental Microbiology.

[32]  C. Friedrich,et al.  Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism? , 2001, Applied and Environmental Microbiology.

[33]  J. Imhoff,et al.  Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. , 2001, FEMS microbiology letters.

[34]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[35]  J. G. Kuenen,et al.  Microbial Thiocyanate Utilization under Highly Alkaline Conditions , 2001, Applied and Environmental Microbiology.

[36]  K. Hallberg,et al.  A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. , 2000, Journal of microbiological methods.

[37]  D. Kelly,et al.  Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. , 2000, International journal of systematic and evolutionary microbiology.

[38]  Jung heon Lee,et al.  Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms , 1999 .

[39]  Y. Sakano,et al.  Assessment of Changes in Microbial Community Structure during Operation of an Ammonia Biofilter with Molecular Tools , 1998, Applied and Environmental Microbiology.

[40]  D. Kelly,et al.  Oxidative metabolism of inorganic sulfur compounds by bacteria , 1997, Antonie van Leeuwenhoek.

[41]  Ronald M. Atlas,et al.  Handbook of microbiological media , 1993 .

[42]  D. Kelly,et al.  Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake , 1991, Archives of Microbiology.

[43]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[44]  A. Willems,et al.  Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and Pseudomonas carboxydoflava), and Hydrog , 1989 .

[45]  D. Kelly,et al.  Isolation and physiological characterisation of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile , 1988, Archives of Microbiology.

[46]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[47]  D. Nelson,et al.  Thiomicrospira crunogena sp. nov., a Colorless, Sulfur-Oxidizing Bacterium from a Deep-Sea Hydrothermal Vent† , 1985 .

[48]  S. Jeffery Evolution of Protein Molecules , 1979 .

[49]  J. H. Tuttle,et al.  Sulfide and thiosulfate-oxidizing bacteria in anoxic marine basins , 1973 .

[50]  J. H. Tuttle,et al.  OCCURRENCE AND TYPES OF THIOBACILLUS-LIKE BACTERIA IN THE SEA1 , 1972 .

[51]  R. Starkey ISOLATION OF SOME BACTERIA WHICH OXIDIZE THIOSULFATE , 1935 .

[52]  R. Starkey PRODUCTS OF THE OXIDATION OF THIOSULFATE BY BACTERIA IN MINERAL MEDIA , 1935, The Journal of general physiology.

[53]  Robert L. Starkey,et al.  Cultivation of Organisms Concerned in the Oxidation of Thiosulfate , 1934, Journal of bacteriology.

[54]  Dontireddy Venkat Reddy,et al.  Turnover time of Tural and Rajvadi hot spring waters , Maharashtra , India , 2013 .

[55]  R. Kolter,et al.  In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes , 2011, Microbial Ecology.

[56]  S. Tasker,et al.  Bergey’s Manual of Systematic Bacteriology , 2010 .

[57]  María Maldonado Vega,et al.  Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. , 2008, International journal of phytoremediation.

[58]  A. Mills,et al.  Manual of environmental microbiology. , 2007 .

[59]  A. Mills,et al.  Manual of Environmental Microbiology, Third Edition , 2007 .

[60]  J. G. Kuenen,et al.  The Genus Thiobacillus , 2006 .

[61]  P. B. Sarolkar Geochemical Characters of Hot Springs of West Coast, Maharashtra State, India , 2005 .

[62]  J. H. Tuttle,et al.  Growth rate stimulation of marine pseudomonads by thiosulfate , 2004, Archives of Microbiology.

[63]  M. Madigan Anoxygenic phototrophic bacteria from extreme environments , 2004, Photosynthesis Research.

[64]  S. Stubner,et al.  Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. , 2003, Systematic and applied microbiology.

[65]  K. Schleifer,et al.  The mesophilic hydrogen-oxidizing (knallgas) bacteria. , 1992 .

[66]  M. Aragno Thermophilic, Aerobic, Hydrogen-Oxidizing (Knallgas) Bacteria , 1992 .

[67]  D. Lane 16S/23S rRNA sequencing , 1991 .

[68]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .

[69]  V. K. Mathur,et al.  Geomorphological studies of Golagar basin in parts of Koraput and Kalahandi district, Orissa , 1987 .

[70]  A. P. Harrison The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. , 1984, Annual review of microbiology.

[71]  R. Swaby,et al.  Activity of sulphur-oxidizing microorganisms in some Australian soils , 1969 .

[72]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .