Approximation guarantees for parallelized maximization of monotone non-submodular function with a cardinality constraint

Emerging applications in machine learning have imposed the problem of monotone non-submodular maximization subject to a cardinality constraint. Meanwhile, parallelism is prevalent for large-scale optimization problems in bigdata scenario while adaptive complexity is an important measurement of parallelism since it quantifies the number of sequential rounds by which the multiple independent functions can be evaluated in parallel. For a monotone non-submodular function and a cardinality constraint, this paper devises an adaptive algorithm for maximizing the function value with the cardinality constraint through employing the generic submodularity ratio $$\gamma $$ to connect the monotone set function with submodularity. The algorithm achieves an approximation ratio of $$1-e^{-\gamma ^2}-\varepsilon $$ and consumes $$O(\log (n/\eta )/\varepsilon ^2)$$ adaptive rounds and $$O(n\log \log (k)/\varepsilon ^3)$$ oracle queries in expectation. Furthermore, when $$\gamma =1$$ , the algorithm achieves an approximation guarantee $$1-1/e-\varepsilon $$ , achieving the same ratio as the state-of-art result for the submodular version of the problem.

[1]  Morteza Zadimoghaddam,et al.  Submodular Maximization with Nearly Optimal Approximation, Adaptivity and Query Complexity , 2018, SODA.

[2]  Morteza Zadimoghaddam,et al.  Randomized Composable Core-sets for Distributed Submodular Maximization , 2015, STOC.

[3]  Eric Balkanski,et al.  The FAST Algorithm for Submodular Maximization , 2019, ICML.

[4]  Andreas Krause,et al.  Continuous DR-submodular Maximization: Structure and Algorithms , 2017, NIPS 2017.

[5]  Kent Quanrud,et al.  Parallelizing greedy for submodular set function maximization in matroids and beyond , 2018, STOC.

[6]  John C. S. Lui,et al.  Boosting Information Spread: An Algorithmic Approach , 2017, ICDE.

[7]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[8]  Qizhi Fang,et al.  Parametric monotone function maximization with matroid constraints , 2019, Journal of Global Optimization.

[9]  Yoshio Okamoto,et al.  Submodular fractional programming for balanced clustering , 2011, Pattern Recognit. Lett..

[10]  Huy L. Nguyen,et al.  Submodular Maximization with Nearly-optimal Approximation and Adaptivity in Nearly-linear Time , 2018, SODA.

[11]  Arpit Agarwal,et al.  Stochastic Submodular Cover with Limited Adaptivity , 2019, SODA.

[12]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[13]  Huy L. Nguyen,et al.  Submodular maximization with matroid and packing constraints in parallel , 2018, STOC.

[14]  Eric Balkanski,et al.  A lower bound for parallel submodular minimization , 2020, STOC.

[15]  Eric Balkanski,et al.  An Exponential Speedup in Parallel Running Time for Submodular Maximization without Loss in Approximation , 2018, SODA.

[16]  Radhika M. Pai,et al.  Feature selection using submodular approach for financial big data , 2019 .

[17]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[18]  Dachuan Xu,et al.  Greedy Algorithm for Maximization of Non-submodular Functions Subject to Knapsack Constraint , 2019, COCOON.

[19]  My T. Thai,et al.  Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice , 2018, ICML.

[20]  Abhimanyu Das,et al.  Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection , 2011, ICML.

[21]  Sanjay Chawla,et al.  SAGA: A Submodular Greedy Algorithm For Group Recommendation , 2017, AAAI.

[22]  Shinji Ito,et al.  Large-Scale Price Optimization via Network Flow , 2016, NIPS.

[23]  Huy L. Nguyen,et al.  Parallel Algorithm for Non-Monotone DR-Submodular Maximization , 2020, ICML.

[24]  Gary L. Miller,et al.  Graph Sketching against Adaptive Adversaries Applied to the Minimum Degree Algorithm , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[25]  Shaojie Tang,et al.  Beyond Pointwise Submodularity: Non-Monotone Adaptive Submodular Maximization in Linear Time , 2020, Theor. Comput. Sci..

[26]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[27]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[28]  Kent Quanrud,et al.  Submodular Function Maximization in Parallel via the Multilinear Relaxation , 2019, SODA.

[29]  Ding-Zhu Du,et al.  Maximize a Monotone Function with a Generic Submodularity Ratio , 2019, AAIM.

[30]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[31]  Andreas Krause,et al.  Guarantees for Greedy Maximization of Non-submodular Functions with Applications , 2017, ICML.

[32]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[33]  Rishabh K. Iyer,et al.  Submodularity in Data Subset Selection and Active Learning , 2015, ICML.

[34]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[35]  Eric Balkanski,et al.  The adaptive complexity of maximizing a submodular function , 2018, STOC.

[36]  Joseph K. Bradley,et al.  Parallel Double Greedy Submodular Maximization , 2014, NIPS.

[37]  Evaggelia Pitoura,et al.  Centrality-Aware Link Recommendations , 2016, WSDM.

[38]  Alan Kuhnle Nearly Linear-Time, Parallelizable Algorithms for Non-Monotone Submodular Maximization , 2021, AAAI.

[39]  Joseph Naor,et al.  A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization , 2015, SIAM J. Comput..

[40]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[41]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[42]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..