Language recognition power and succinctness of affine automata

In this work we study a non-linear generalization based on affine transformations of probabilistic and quantum automata proposed recently by Díaz-Caro and Yakaryılmaz (in: Computer science—theory and applications, LNCS, vol 9691. Springer, pp 1–15, 2016. ArXiv:1602.04732) referred to as affine automata. First, we present efficient simulations of probabilistic and quantum automata by means of affine automata which characterizes the class of exclusive stochastic languages. Then we initiate a study on the succintness of affine automata. In particular, we show that an infinite family of unary regular languages can be recognized by 2-state affine automata, whereas the number of inner states of quantum and probabilistic automata cannot be bounded. Finally, we present a characterization of all (regular) unary languages recognized by two-state affine automata.

[1]  Mika Hirvensalo,et al.  Quantum Automata with Open Time Evolution , 2010, Int. J. Nat. Comput. Res..

[2]  Kamil Khadiev,et al.  Very narrow quantum OBDDs and width hierarchies for classical OBDDs , 2014, DCFS.

[3]  Etienne Moutot,et al.  On the computational power of affine automata , 2016, LATA.

[4]  A. C. Cem Say,et al.  Languages recognized by nondeterministic quantum finite automata , 2009, Quantum Inf. Comput..

[5]  Marek Karpinski,et al.  Lower Space Bounds for Randomized Computation , 1994, ICALP.

[6]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Abuzer Yakaryilmaz,et al.  Affine Computation and Affine Automaton , 2016, CSR.

[8]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[9]  Ioan I. Macarie Space-Efficient Deterministic Simulation of Probabilistic Automata , 1998, SIAM J. Comput..

[10]  Paavo Turakainen Word-functions of stochastic and pseudo stochastic automata , 1975 .

[11]  Viliam Geffert,et al.  Classical Automata on Promise Problems , 2014, Discret. Math. Theor. Comput. Sci..

[12]  A. C. Cem Say,et al.  Succinctness of two-way probabilistic and quantum finite automata , 2009, Discret. Math. Theor. Comput. Sci..

[13]  A. C. Cem Say,et al.  Quantum Finite Automata: A Modern Introduction , 2014, Computing with New Resources.

[14]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[15]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[16]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[17]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[18]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[19]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[20]  Abuzer Yakaryilmaz,et al.  Unary probabilistic and quantum automata on promise problems , 2015, Quantum Inf. Process..

[21]  Kamil Khadiev,et al.  Zero-Error Affine, Unitary, and Probabilistic OBDDs , 2017 .

[22]  Andris Ambainis,et al.  Superiority of exact quantum automata for promise problems , 2011, Inf. Process. Lett..

[23]  Abuzer Yakaryilmaz,et al.  Implications of Quantum Automata for Contextuality , 2014, CIAA.

[24]  Marcos Villagra,et al.  Language Recognition Power and Succinctness of Affine Automata , 2016, UCNC.

[25]  Shenggen Zheng,et al.  Potential of Quantum Finite Automata with Exact Acceptance , 2014, Int. J. Found. Comput. Sci..

[26]  Abuzer Yakaryilmaz,et al.  Can one quantum bit separate any pair of words with zero-error? , 2016, ArXiv.

[27]  Masaki Nakanishi,et al.  Affine counter automata , 2017, AFL.

[28]  A. C. Cem Say,et al.  Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.

[29]  Orna Kupferman,et al.  Counting with Automata , 1999 .

[30]  Lihua Wu,et al.  Characterizations of one-way general quantum finite automata , 2009, Theor. Comput. Sci..

[31]  Arseny M. Shur,et al.  More on quantum, stochastic, and pseudo stochastic languages with few states , 2015, Natural Computing.

[32]  Andris Ambainis,et al.  Automata and Quantum Computing , 2015, Handbook of Automata Theory.