Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases

[1]  T. Dawson,et al.  Trumping neurodegeneration: Targeting common pathways regulated by autosomal recessive Parkinson's disease genes , 2017, Experimental Neurology.

[2]  Xuetao Cao,et al.  An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism , 2017, Science.

[3]  Karen S. Frese,et al.  Genomic structural variations lead to dysregulation of important coding and non‐coding RNA species in dilated cardiomyopathy , 2017, EMBO molecular medicine.

[4]  S. Gustincich,et al.  The Yin and Yang of nucleic acid-based therapy in the brain , 2017, Progress in Neurobiology.

[5]  Jordan A. Ramilowski,et al.  An atlas of human long non-coding RNAs with accurate 5′ ends , 2017, Nature.

[6]  B. Mandefro,et al.  Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy , 2017, Proceedings of the National Academy of Sciences.

[7]  Simon C. Potter,et al.  Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing , 2017, Genome Biology.

[8]  L. Rubin,et al.  The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy , 2017, Neuron.

[9]  G. Schellenberg,et al.  Genomic variants, genes, and pathways of Alzheimer's disease: An overview , 2017, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[10]  T. Derrien,et al.  A Point Mutation in a lincRNA Upstream of GDNF Is Associated to a Canine Insensitivity to Pain: A Spontaneous Model for Human Sensory Neuropathies , 2016, PLoS genetics.

[11]  T. Lynch,et al.  Genetics of Frontotemporal Dementia , 2016, Current Neurology and Neuroscience Reports.

[12]  J. Rinn,et al.  The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan , 2016, Nature.

[13]  D. Hernandez,et al.  Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe , 2016, Genome Medicine.

[14]  S. Gustincich,et al.  Synthetic long non-coding RNAs [SINEUPs] rescue defective gene expression in vivo , 2016, Scientific Reports.

[15]  Ekaterina Nosova,et al.  α‐synuclein genetic variability: A biomarker for dementia in Parkinson disease , 2016, Annals of neurology.

[16]  David S. Wishart,et al.  Heatmapper: web-enabled heat mapping for all , 2016, Nucleic Acids Res..

[17]  C. Blauwendraat,et al.  C9orf72 is differentially expressed in the central nervous system and myeloid cells and consistently reduced in C9orf72, MAPT and GRN mutation carriers , 2016, Acta Neuropathologica Communications.

[18]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[19]  Simon C. Potter,et al.  Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. , 2016, American journal of human genetics.

[20]  C. Wahlestedt,et al.  Transcriptomic Profiling of Extracellular RNAs Present in Cerebrospinal Fluid Identifies Differentially Expressed Transcripts in Parkinson’s Disease , 2016, Journal of Parkinson's disease.

[21]  H. Soreq,et al.  Transcriptome profiling in Parkinson's leukocytes: from early diagnostics to neuroimmune therapeutic prospects. , 2016, Current opinion in pharmacology.

[22]  Xiaolin Zhou,et al.  Identification of Alzheimer's disease–associated long noncoding RNAs , 2015, Neurobiology of Aging.

[23]  D. di Bernardo,et al.  Blood transcriptomics of drug-naïve sporadic Parkinson’s disease patients , 2015, BMC Genomics.

[24]  Keith A. Johnson,et al.  Modulation of TREM2 by CD33: a protein QTL study integrates Alzheimer loci in human monocytes , 2015, Nature neuroscience.

[25]  Piero Carninci,et al.  SINEUPs: A new class of natural and synthetic antisense long non-coding RNAs that activate translation , 2015, RNA biology.

[26]  O. Khorkova,et al.  Basic biology and therapeutic implications of lncRNA. , 2015, Advanced drug delivery reviews.

[27]  Piero Carninci,et al.  SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells , 2015, Front. Cell. Neurosci..

[28]  R. F. Luco,et al.  A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature , 2015, Nature Structural &Molecular Biology.

[29]  Thomas J. Ha,et al.  Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells , 2015, Science.

[30]  D. Holtzman,et al.  TREM2 lipid sensing sustains microglia response in an Alzheimer’s disease model , 2015, Cell.

[31]  S. Dhanasekaran,et al.  The landscape of long noncoding RNAs in the human transcriptome , 2015, Nature Genetics.

[32]  Derek W Wright,et al.  Gateways to the FANTOM5 promoter level mammalian expression atlas , 2015, Genome Biology.

[33]  André L. Martins,et al.  Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers , 2014, Nature Genetics.

[34]  Marcel E. Dinger,et al.  lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs , 2014, Nucleic Acids Res..

[35]  Leighton J. Core,et al.  Nuclear stability and transcriptional directionality separate functionally distinct RNA species , 2014, Nature Communications.

[36]  W. M. van der Flier,et al.  Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies , 2014, Human molecular genetics.

[37]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[38]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[39]  Yoshihide Hayashizaki,et al.  Interactive visualization and analysis of large-scale sequencing datasets using ZENBU , 2014, Nature Biotechnology.

[40]  Hagai Bergman,et al.  Long Non-Coding RNA and Alternative Splicing Modulations in Parkinson's Leukocytes Identified by RNA Sequencing , 2014, PLoS Comput. Biol..

[41]  David R. Kelley,et al.  Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre , 2014, Nature Structural &Molecular Biology.

[42]  David R. Kelley,et al.  Topological Organization of Multi-chromosomal Regions by Firre , 2014, Nature structural & molecular biology.

[43]  Claes Wahlestedt,et al.  Targeting long non-coding RNA to therapeutically upregulate gene expression. , 2013, Nature Reviews Drug Discovery.

[44]  J. Rothstein,et al.  RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.

[45]  Bradley T. Hyman,et al.  Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta , 2013, Neuron.

[46]  L. Tran,et al.  Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease , 2013, Cell.

[47]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[48]  T. Hirose,et al.  Paraspeckle formation during the biogenesis of long non-coding RNAs , 2013, RNA biology.

[49]  B. Becher,et al.  Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease–like pathology and cognitive decline , 2012, Nature Medicine.

[50]  Piero Carninci,et al.  Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat , 2012, Nature.

[51]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[52]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[53]  Beatrice Bodega,et al.  A Long ncRNA Links Copy Number Variation to a Polycomb/Trithorax Epigenetic Switch in FSHD Muscular Dystrophy , 2012, Cell.

[54]  C. Wahlestedt,et al.  Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation , 2012, Nature Biotechnology.

[55]  C. Wahlestedt,et al.  Natural Antisense Inhibition Results in Transcriptional De-Repression and Gene Upregulation , 2012, Nature biotechnology.

[56]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[57]  D. Geschwind,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[58]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[59]  Ferdinando Di Cunto,et al.  Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs , 2011, Cell.

[60]  R. Margolis,et al.  A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression. , 2011, Human molecular genetics.

[61]  Marc N. Offman,et al.  A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. , 2011, American journal of human genetics.

[62]  M. Farrer,et al.  VPS35 mutations in Parkinson disease. , 2011, American journal of human genetics.

[63]  S. Sunkin,et al.  CTCF Regulates Ataxin-7 Expression through Promotion of a Convergently Transcribed, Antisense Noncoding RNA , 2011, Neuron.

[64]  Howard Y. Chang,et al.  A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression , 2011, Nature.

[65]  D. G. Clark,et al.  Common variants in MS4A4/MS4A6E, CD2uAP, CD33, and EPHA1 are associated with late-onset Alzheimer’s disease , 2011, Nature Genetics.

[66]  Nick C Fox,et al.  Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease , 2011, Nature Genetics.

[67]  K. Dujardin,et al.  SNCA locus duplication carriers: from genetics to Parkinson disease phenotypes , 2011, Human mutation.

[68]  L. Maquat,et al.  lncRNAs transactivate Staufen1-mediated mRNA decay by duplexing with 3'UTRs via Alu elements , 2010, Nature.

[69]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[70]  B. Blencowe,et al.  The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. , 2010, Molecular cell.

[71]  J. Rinn,et al.  A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response , 2010, Cell.

[72]  M. Nalls,et al.  Evidence for natural antisense transcript-mediated inhibition of microRNA function , 2010, Genome Biology.

[73]  A. Mallamaci,et al.  Regulation of Emx2 Expression by Antisense Transcripts in Murine Cortico-Cerebral Precursors , 2010, PloS one.

[74]  Martin S. Taylor,et al.  The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line , 2009, Nature Genetics.

[75]  John N. Hutchinson,et al.  An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. , 2009, Molecular cell.

[76]  F. Rosenbauer,et al.  PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. , 2008, Genes & development.

[77]  T. Morgan,et al.  Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase , 2008, Nature Medicine.

[78]  A. G. de Herreros,et al.  A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. , 2008, Genes & development.

[79]  A. Feinberg,et al.  Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA , 2008, Nature.

[80]  S. Tapscott,et al.  An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. , 2007, Human molecular genetics.

[81]  P. Lockhart,et al.  Parkin Co-regulated Gene (PACRG) is regulated by the ubiquitin–proteasomal system and is present in the pathological features of parkinsonian diseases , 2007, Neurobiology of Disease.

[82]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[83]  T. Lassmann,et al.  The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function , 2007, BMC Genomics.

[84]  Martin S. Taylor,et al.  Genome-wide analysis of mammalian promoter architecture and evolution , 2006, Nature Genetics.

[85]  Sin Lam Tan,et al.  Complex Loci in Human and Mouse Genomes , 2006, PLoS genetics.

[86]  S. Batalov,et al.  Antisense Transcription in the Mammalian Transcriptome , 2005, Science.

[87]  Janel O. Johnson,et al.  α-Synuclein Locus Triplication Causes Parkinson's Disease , 2003, Science.

[88]  D. Higgs,et al.  Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease , 2003, Nature Genetics.

[89]  M. Lazar,et al.  Post-transcriptional Regulation of Thyroid Hormone Receptor Expression by cis-Acting Sequences and a Naturally Occurring Antisense RNA* , 2000, The Journal of Biological Chemistry.

[90]  V. Bonifati Genetics of Parkinson's disease--state of the art, 2013. , 2014, Parkinsonism & related disorders.

[91]  Xiaoqiu Huang,et al.  Over 20% of human transcripts might form sense-antisense pairs. , 2004, Nucleic acids research.

[92]  A. Singleton,et al.  alpha-Synuclein locus triplication causes Parkinson's disease. , 2003, Science.

[93]  Piero Carninci,et al.  Unamplified Cap Analysis of Gene Expression on a Single-molecule Sequencer , 2022 .