Group Decision Making Methodology Based on the Atanassov's Intuitionistic Fuzzy Set Generalized OWA Operator

The aim of this paper is to develop a new methodology for solving group decision making problems in which preference comparisons between alternatives are expressed with Atanassov's intuitionistic fuzzy (IF) preference relations. In this methodology, the generalized ordered weighted averaging (GOWA) operator is extended to develop the Atanassov's IF set (IFS) generalized ordered weighted averaging (IFSGOWA) operator, which can aggregate vague or imprecise information expressed with the Atanassov's IFSs. The Atanassov's IFSGOWA operator based methodology is further developed to solve group decision making problems with Atanassov's IF preference relations. A real example of the agroecological region assessment problem is used to illustrate the implementation and applicability of the proposed methodology. It is also shown that the obtained decision results could be affected by the choice of the parameter lambda and the nature of the weights.

[1]  L. D'Apuzzo,et al.  A general unified framework for pairwise comparison matrices in multicriterial methods , 2009 .

[2]  Humberto Bustince,et al.  Structures on intuitionistic fuzzy relations , 1996, Fuzzy Sets Syst..

[3]  Etienne E. Kerre,et al.  On the composition of intuitionistic fuzzy relations , 2003, Fuzzy Sets Syst..

[4]  Deng-Feng Li,et al.  Some measures of dissimilarity in intuitionistic fuzzy structures , 2004, J. Comput. Syst. Sci..

[5]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[6]  Zeshui Xu,et al.  Intuitionistic preference relations and their application in group decision making , 2007, Inf. Sci..

[7]  Zeshui Xu,et al.  The continuous ordered weighted geometric operator and its application to decision making , 2006, Fuzzy Sets Syst..

[8]  Etienne E. Kerre,et al.  On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision , 2007, Inf. Sci..

[9]  Deng-Feng Li,et al.  TOPSIS-Based Nonlinear-Programming Methodology for Multiattribute Decision Making With Interval-Valued Intuitionistic Fuzzy Sets , 2010, IEEE Transactions on Fuzzy Systems.

[10]  Sy-Ming Guu Fuzzy weighted averages revisited , 2002, Fuzzy Sets Syst..

[11]  Humberto Bustince,et al.  Intuitionistic fuzzy relations (Part I). , 1995 .

[12]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[13]  Deng-Feng Li,et al.  Multiattribute decision making models and methods using intuitionistic fuzzy sets , 2005, J. Comput. Syst. Sci..

[14]  R. Yager Quantifier guided aggregation using OWA operators , 1996, Int. J. Intell. Syst..

[15]  Dimitar Filev,et al.  Analytic Properties of Maximum Entropy OWA Operators , 1995, Inf. Sci..

[16]  Dimitar Filev,et al.  On the issue of obtaining OWA operator weights , 1998, Fuzzy Sets Syst..

[17]  Zeshui Xu,et al.  An overview of methods for determining OWA weights , 2005, Int. J. Intell. Syst..

[18]  Rita Almeida Ribeiro,et al.  Generalized mixture operators using weighting functions: A comparative study with WA and OWA , 2003, Eur. J. Oper. Res..

[19]  Janusz Kacprzyk,et al.  The Ordered Weighted Averaging Operators , 1997 .

[20]  J. Kacprzyk,et al.  Group decision making under intuitionistic fuzzy preference relations , 1998 .

[21]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[22]  Ronald R. Yager,et al.  Level sets and the representation theorem for intuitionistic fuzzy sets , 2009, Soft Comput..

[23]  Humberto Bustince,et al.  Construction of intuitionistic fuzzy relations with predetermined properties , 2000, Fuzzy Sets Syst..

[24]  Radko Mesiar,et al.  Weighted aggregation operators based on minimization , 2008, Inf. Sci..

[25]  Ranjit Biswas,et al.  An application of intuitionistic fuzzy sets in medical diagnosis , 2001, Fuzzy Sets Syst..

[26]  R. Yager Families of OWA operators , 1993 .

[27]  Deng-Feng Li,et al.  Linear programming method for MADM with interval-valued intuitionistic fuzzy sets , 2010, Expert Syst. Appl..

[28]  Byeong Seok Ahn,et al.  Least‐squared ordered weighted averaging operator weights , 2008, Int. J. Intell. Syst..

[29]  Humberto Bustince,et al.  Perturbation of Intuitionistic Fuzzy Relations , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[30]  Li Dengfeng,et al.  New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions , 2002, Pattern Recognit. Lett..

[31]  Humberto Bustince,et al.  Vague sets are intuitionistic fuzzy sets , 1996, Fuzzy Sets Syst..

[32]  Ronald R. Yager,et al.  Some aspects of intuitionistic fuzzy sets , 2009, Fuzzy Optim. Decis. Mak..

[33]  Huawen Liu,et al.  Multi-criteria decision-making methods based on intuitionistic fuzzy sets , 2007, Eur. J. Oper. Res..

[34]  Ronald R. Yager,et al.  Generalized OWA Aggregation Operators , 2004, Fuzzy Optim. Decis. Mak..

[35]  Humberto Bustince PERTURBATION OF INTUITIONISTIC FUZZY RELATIONS , 2001 .

[36]  Humberto Bustince,et al.  Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning , 2000, Fuzzy Sets Syst..

[37]  W.-L. Gau,et al.  Vague sets , 1993, IEEE Trans. Syst. Man Cybern..

[38]  Didier Dubois,et al.  Terminological difficulties in fuzzy set theory - The case of "Intuitionistic Fuzzy Sets" , 2005, Fuzzy Sets Syst..

[39]  Humberto Bustince Sola,et al.  Intuitionistic fuzzy relations (Part II) Effect of Atanassov's operators on the properties of the intuitionistic fuzzy relations , 1995 .

[40]  Krassimir T. Atanassov,et al.  Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade's paper "Terminological difficulties in fuzzy set theory - the case of "Intuitionistic Fuzzy Sets" , 2005, Fuzzy Sets Syst..

[41]  W. Pedrycz,et al.  Generalized means as model of compensative connectives , 1984 .