Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance

[1]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[2]  Timothy C. Barnett,et al.  Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus , 2014, Clinical Microbiology Reviews.

[3]  João André Carriço,et al.  Scarlet Fever Is Caused By a Limited Number of Streptococcus pyogenes Lineages and Is Associated with the Exotoxin Genes ssa, speA and speC , 2014, The Pediatric infectious disease journal.

[4]  V. Nizet,et al.  The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. , 2013, Cell host & microbe.

[5]  S. Cui,et al.  Characteristics of Group A Streptococcus Strains Circulating during Scarlet Fever Epidemic, Beijing, China, 2011 , 2013, Emerging infectious diseases.

[6]  M. Pirmohamed,et al.  Emergence and global spread of epidemic healthcare-associated Clostridium difficile , 2012, Nature Genetics.

[7]  Ruifu Yang,et al.  Draft Genome Sequences of Two Streptococcus pyogenes Strains Involved in Abnormal Sharp Raised Scarlet Fever in China, 2011 , 2012, Journal of bacteriology.

[8]  E. Lau,et al.  Scarlet Fever Outbreak, Hong Kong, 2011 , 2012, Emerging infectious diseases.

[9]  Xiaohong Wang,et al.  Outbreak of Scarlet Fever Associated With emm12 Type Group A Streptococcus in 2011 in Shanghai, China , 2012, The Pediatric infectious disease journal.

[10]  S. Lok,et al.  Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. , 2012, The Journal of infectious diseases.

[11]  K. Yuen,et al.  Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem , 2012, Emerging Microbes & Infections.

[12]  Xiaorong Liu,et al.  Epidemiological and molecular characteristics of clinical isolates of Streptococcus pyogenes collected between 2005 and 2008 from Chinese children. , 2012, Journal of medical microbiology.

[13]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[14]  Yhu-Chering Huang,et al.  Scarlet fever outbreak in Hong Kong, 2011. , 2011, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[15]  Nicola K. Petty,et al.  BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons , 2011, BMC Genomics.

[16]  David S. Wishart,et al.  PHAST: A Fast Phage Search Tool , 2011, Nucleic Acids Res..

[17]  J. Burton,et al.  Rapid Pneumococcal Evolution in Response to Clinical Interventions , 2011, Science.

[18]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[19]  Yuriy Fofanov,et al.  Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics , 2010, Proceedings of the National Academy of Sciences.

[20]  Julian Parkhill,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[21]  Alexei J. Drummond,et al.  Bayesian Phylogeography Finds Its Roots , 2009, PLoS Comput. Biol..

[22]  Yee‐Shin Lin,et al.  Changing Epidemiology of Streptococcus pyogenes emm Types and Associated Invasive and Noninvasive Infections in Southern Taiwan , 2009, Journal of Clinical Microbiology.

[23]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[24]  V. Nizet,et al.  Role of group A Streptococcus HtrA in the maturation of SpeB protease , 2007, Proteomics.

[25]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[26]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[27]  Yu-ling Zheng,et al.  Epidemiological analysis of group A streptococci recovered from patients in China. , 2006, Journal of medical microbiology.

[28]  Michal J. Nagiec,et al.  Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[30]  J. Musser,et al.  The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. , 2002, Trends in microbiology.

[31]  K. Yuen,et al.  Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. , 1999, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[32]  R. Kessler,et al.  Growth characteristics of group A streptococci in a new chemically defined medium , 1980, Infection and immunity.

[33]  S. R. Duncan,et al.  Modelling the dynamics of scarlet fever epidemics in the 19th century , 2004, European Journal of Epidemiology.

[34]  D. Morens,et al.  Severe streptococcal infections in historical perspective. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.