tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria

Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny.

[1]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[2]  Kevin Bullaughey MULTIDIMENSIONAL ADAPTIVE EVOLUTION OF A FEED‐FORWARD NETWORK AND THE ILLUSION OF COMPENSATION , 2013, Evolution; international journal of organic evolution.

[3]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[4]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[5]  R. Doolittle,et al.  Evolutionary anomalies among the aminoacyl-tRNA synthetases. , 1998, Current opinion in genetics & development.

[6]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[7]  William A. Siebold,et al.  SAR11 clade dominates ocean surface bacterioplankton communities , 2002, Nature.

[8]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[9]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[10]  Ryan J. Yoder,et al.  Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade , 2011, Scientific reports.

[11]  Trey Ideker,et al.  Coevolution within a transcriptional network by compensatory trans and cis mutations. , 2010, Genome research.

[12]  Thijs J. G. Ettema,et al.  Comparative and Phylogenomic Evidence That the Alphaproteobacterium HIMB59 Is Not a Member of the Oceanic SAR11 Clade , 2013, PloS one.

[13]  E V Koonin,et al.  Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. , 1999, Genome research.

[14]  Juliane C. Dohm,et al.  Horizontal Gene Transfer in Aminoacyl-tRNA Synthetases Including Leucine-Specific Subtypes , 2006, Journal of Molecular Evolution.

[15]  Frédéric Partensky,et al.  Accelerated evolution associated with genome reduction in a free-living prokaryote , 2005, Genome Biology.

[16]  COMPENSATORY EVOLUTION OF INTERACTING GENE PRODUCTS THROUGH MULTIFUNCTIONAL INTERMEDIATES , 2005, Evolution; international journal of organic evolution.

[17]  Sebastian J. Maerkl,et al.  Does Positive Selection Drive Transcription Factor Binding Site Turnover? A Test with Drosophila Cis-Regulatory Modules , 2011, PLoS genetics.

[18]  Thijs J. G. Ettema,et al.  A Phylometagenomic Exploration of Oceanic Alphaproteobacteria Reveals Mitochondrial Relatives Unrelated to the SAR11 Clade , 2011, PloS one.

[19]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[20]  R. Durbin,et al.  RNA sequence analysis using covariance models. , 1994, Nucleic acids research.

[21]  R. Knight,et al.  Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data , 2009, The ISME Journal.

[22]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[23]  Peter F. Stadler,et al.  tRNAdb 2009: compilation of tRNA sequences and tRNA genes , 2008, Nucleic Acids Res..

[24]  Dean Laslett,et al.  ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. , 2004, Nucleic acids research.

[25]  David G. Stork,et al.  Pattern Classification , 1973 .

[26]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Ardell Computational analysis of tRNA identity , 2010, FEBS letters.

[28]  U. Gophna,et al.  The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. , 2011, Molecular biology and evolution.

[29]  N. Moran,et al.  Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. , 2003, Molecular biology and evolution.

[30]  Thijs J. G. Ettema,et al.  Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. , 2012, Molecular biology and evolution.

[31]  D. Petrov,et al.  Evidence That Mutation Is Universally Biased towards AT in Bacteria , 2010, PLoS genetics.

[32]  H. Philippe,et al.  Ancient phylogenetic relationships. , 2002, Theoretical population biology.

[33]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[34]  Christopher R. Baker,et al.  Extensive DNA-binding specificity divergence of a conserved transcription regulator , 2011, Proceedings of the National Academy of Sciences.

[35]  David H. Ardell,et al.  TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase , 2006, Nucleic acids research.

[36]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[37]  R. Giegé Fifty Years Excitement with Science: Recollections with and without tRNA , 2013, The Journal of Biological Chemistry.

[38]  Pseudovibrio japonicus sp. nov., isolated from coastal seawater in Japan. , 2007, International journal of systematic and evolutionary microbiology.

[39]  Eva Freyhult,et al.  Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos , 2006, Nucleic acids research.

[40]  W. Doolittle,et al.  Prokaryotic evolution in light of gene transfer. , 2002, Molecular biology and evolution.

[41]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[42]  I. Ruvinsky,et al.  Coevolution within and between Regulatory Loci Can Preserve Promoter Function Despite Evolutionary Rate Acceleration , 2012, PLoS genetics.

[43]  B. Sobral,et al.  Loss of a Universal tRNA Feature , 2006, Journal of bacteriology.

[44]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[45]  Francisco J. Silva,et al.  Differential annotation of tRNA genes with anticodon CAT in bacterial genomes , 2006, Nucleic acids research.

[46]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[47]  W. Lim,et al.  Systematic Functional Prioritization of Protein Posttranslational Modifications , 2012, Cell.

[48]  Richard Giegé,et al.  Toward a more complete view of tRNA biology , 2008, Nature Structural &Molecular Biology.

[49]  Maureen A. O’Malley,et al.  Prokaryotic evolution and the tree of life are two different things , 2009, Biology Direct.

[50]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[51]  Peter G Foster,et al.  Modeling compositional heterogeneity. , 2004, Systematic biology.

[52]  J Abelson,et al.  Evolution of a transfer RNA gene through a point mutation in the anticodon. , 1998, Science.

[53]  T. Embley,et al.  The SAR11 Group of Alpha-Proteobacteria Is Not Related to the Origin of Mitochondria , 2012, PloS one.

[54]  Sophie S Abby,et al.  Lateral gene transfer as a support for the tree of life , 2012, Proceedings of the National Academy of Sciences.

[55]  S. Giovannoni,et al.  Streamlining and Core Genome Conservation among Highly Divergent Members of the SAR11 Clade , 2012, mBio.

[56]  N. Moran,et al.  Microbial Minimalism Genome Reduction in Bacterial Pathogens , 2002, Cell.

[57]  A. E. Hirsh,et al.  Evolutionary Rate in the Protein Interaction Network , 2002, Science.

[58]  VOLUME LXXXI,et al.  Cold Spring Harbor Symposia on Quantitative Biology , 2005, Protoplasma.

[59]  Rob Knight,et al.  Stable tRNA-based phylogenies using only 76 nucleotides. , 2010, RNA.

[60]  Gary J. Olsen,et al.  Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process , 2000, Microbiology and Molecular Biology Reviews.

[61]  J. Losos,et al.  Who Speaks with a Forked Tongue? , 2012, Science.

[62]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  Kelly P. Williams,et al.  A Robust Species Tree for the Alphaproteobacteria , 2007, Journal of bacteriology.

[64]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[65]  Takeshi Itoh,et al.  Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R Giegé,et al.  Universal rules and idiosyncratic features in tRNA identity. , 1998, Nucleic acids research.

[67]  Radhey S. Gupta,et al.  Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups , 2007, BMC Microbiology.

[68]  J. Peter Gogarten,et al.  The impact of HGT on phylogenomic reconstruction methods , 2014, Briefings Bioinform..

[69]  D. Hartl,et al.  Compensatory nearly neutral mutations: selection without adaptation. , 1996, Journal of theoretical biology.

[70]  David H. Ardell,et al.  TFAM 1.0: an online tRNA function classifier , 2007, Nucleic Acids Res..

[71]  Gary D. Stormo,et al.  Displaying the information contents of structural RNA alignments: the structure logos , 1997, Comput. Appl. Biosci..

[72]  D. Ardell,et al.  New computational methods reveal tRNA identity element divergence between Proteobacteria and Cyanobacteria. , 2007, Biochimie.

[73]  Massimo Vergassola,et al.  Causes for the intriguing presence of tRNAs in phages. , 2007, Genome research.

[74]  S. Andersson,et al.  Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases. , 2007, Molecular biology and evolution.

[75]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[76]  P. Lengyel Problems in Protein Biosynthesis , 1966, The Journal of general physiology.

[77]  P. Schimmel,et al.  Maintaining genetic code through adaptations of tRNA synthetases to taxonomic domains. , 1997, Trends in biochemical sciences.

[78]  O. Uhlenbeck,et al.  tRNA conformity. , 2001, Cold Spring Harbor symposia on quantitative biology.

[79]  Christian de Duve,et al.  The second genetic code , 1988, Nature.

[80]  S. Shen,et al.  The statistical analysis of compositional data , 1983 .

[81]  D. Andersson,et al.  Whole-genome mutational biases in bacteria , 2008, Proceedings of the National Academy of Sciences.

[82]  R Giegé,et al.  An operational RNA code for amino acids and possible relationship to genetic code. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Toshimichi Ikemura,et al.  tRNADB-CE 2011: tRNA gene database curated manually by experts , 2010, Nucleic Acids Res..

[84]  A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine , 2006, Nucleic acids research.

[85]  Z. Luthey-Schulten,et al.  Dynamical networks in tRNA:protein complexes , 2009, Proceedings of the National Academy of Sciences.

[86]  C. Robert,et al.  Phylogenomic Analysis of Odyssella thessalonicensis Fortifies the Common Origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana Mitochondrion , 2011, PloS one.

[87]  James R. Brown,et al.  Gene Descent, Duplication, and Horizontal Transfer in the Evolution of Glutamyl- and Glutaminyl-tRNA Synthetases , 1999, Journal of Molecular Evolution.

[88]  Z. Luthey-Schulten,et al.  Functional role of ribosomal signatures. , 2010, Biophysical journal.

[89]  C R Woese,et al.  A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. , 1991, Systematic and applied microbiology.

[90]  Sergey Steinberg,et al.  Compilation of tRNA sequences and sequences of tRNA genes , 2004, Nucleic Acids Res..

[91]  Zaida Luthey-Schulten,et al.  Molecular signatures of ribosomal evolution , 2008, Proceedings of the National Academy of Sciences.

[92]  Cheryl P. Andam,et al.  Biased gene transfer in microbial evolution , 2011, Nature Reviews Microbiology.