Evolution and breakdown of helical vortex wakes behind a wind turbine

The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable.

[1]  S. Widnall The stability of a helical vortex filament , 1972, Journal of Fluid Mechanics.

[2]  B. P. Gupta,et al.  Theoretical Analysis of the Aerodynamic Stability of Multiple, Interdigitated Helical Vortices , 1974 .

[3]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[4]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[5]  F. Caradonna Performance Measurement and Wake Characteristics of a Model Rotor in Axial Flight , 1999 .

[6]  Mahendra J. Bhagwat,et al.  Stability Analysis of Helicopter Rotor Wakes in Axial Flight , 2000 .

[7]  L. Graftieaux,et al.  Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows , 2001 .

[8]  J. Boersma,et al.  On the motion of multiple helical vortices , 2001, Journal of Fluid Mechanics.

[9]  L. Vermeer,et al.  A review of wind turbine wake research at TU Delft , 2001 .

[10]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[11]  J. Sørensen,et al.  Wind turbine wake aerodynamics , 2003 .

[12]  V. Okulov On the stability of multiple helical vortices , 2004, Journal of Fluid Mechanics.

[13]  R. Adrian,et al.  On the relationships between local vortex identification schemes , 2005, Journal of Fluid Mechanics.

[14]  Jens Nørkær Sørensen,et al.  Tip loss corrections for wind turbine computations , 2005 .

[15]  Helge Madsen Aagaard,et al.  Dynamic wake meandering modeling , 2007 .

[16]  P. Koumoutsakos,et al.  A numerical study of the stabilitiy of helical vortices using vortex methods , 2007 .

[17]  J. Sørensen,et al.  Stability of helical tip vortices in a rotor far wake , 2007, Journal of Fluid Mechanics.

[18]  Andreas Fouras,et al.  Target-free Stereo PIV: a novel technique with inherent error estimation and improved accuracy , 2008 .

[19]  Y. Fukumoto,et al.  Short-wavelength stability analysis of a helical vortex tube? , 2009 .

[20]  E. S. Politis,et al.  Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore , 2009, Renewable Energy.

[21]  Brenden P. Epps,et al.  An error threshold criterion for singular value decomposition modes extracted from PIV data , 2010 .

[22]  Stefan Ivanell,et al.  Stability analysis of the tip vortices of a wind turbine , 2008 .

[23]  R. Camussi,et al.  Mechanisms of evolution of the propeller wake in the transition and far fields , 2011, Journal of Fluid Mechanics.

[24]  J. Sørensen Instability of helical tip vortices in rotor wakes , 2011, Journal of Fluid Mechanics.

[25]  J. Sheridan,et al.  Characterisation of a horizontal axis wind turbine’s tip and root vortices , 2013 .

[26]  三浦 秀夫 会議参加・報告記 The Science of Making Torque from Wind参加報告 , 2014 .