Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

[1]  R. Waser,et al.  Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems. , 2016, Nature nanotechnology.

[2]  I. Valov,et al.  Graphene‐Modified Interface Controls Transition from VCM to ECM Switching Modes in Ta/TaOx Based Memristive Devices , 2015, Advanced materials.

[3]  Fei Zhou,et al.  (Invited) Intrinsic Unipolar SiOx-Based Resistive Switching Memory: Characterization, Mechanism and Applications , 2015 .

[4]  Markus Kubicek,et al.  How Does Moisture Affect the Physical Property of Memristance for Anionic–Electronic Resistive Switching Memories? , 2015 .

[5]  A. Kenyon,et al.  Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory , 2015 .

[6]  Jack C. Lee,et al.  Discussion on device structures and hermetic encapsulation for SiOx random access memory operation in air , 2014 .

[7]  R. Waser,et al.  Inside Back Cover: Impact of the Counter‐Electrode Material on Redox Processes in Resistive Switching Memories (ChemElectroChem 8/2014) , 2014 .

[8]  Fei Zhou,et al.  Intrinsic SiOx-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing , 2014 .

[9]  Fei Zhou,et al.  Intrinsic SiOx-based unipolar resistive switching memory. I. Oxide stoichiometry effects on reversible switching and program window optimization , 2014 .

[10]  Li Ji,et al.  Integrated one diode-one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. , 2014, Nano letters.

[11]  Ilia Valov,et al.  Redox‐Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale , 2014 .

[12]  Investigation of edge- and bulk-related resistive switching behaviors and backward-scan effects in SiOx-based resistive switching memory , 2013 .

[13]  Peng Chen,et al.  Tunable Electroluminescence in Planar Graphene/SiO2 Memristors , 2013, Advanced materials.

[14]  James M Tour,et al.  High‐Performance and Low‐Power Rewritable SiOx 1 kbit One Diode–One Resistor Crossbar Memory Array , 2013, Advanced materials.

[15]  R. Waser,et al.  Generic relevance of counter charges for cation-based nanoscale resistive switching memories. , 2013, ACS nano.

[16]  Li Ji,et al.  Oxygen-induced bi-modal failure phenomenon in SiOx-based resistive switching memory , 2013 .

[17]  Jan van den Hurk,et al.  Nanobatteries in redox-based resistive switches require extension of memristor theory , 2013, Nature Communications.

[18]  Shimeng Yu,et al.  HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. , 2013, ACS nano.

[19]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[20]  Yen-Ting Chen,et al.  Understanding the resistive switching characteristics and mechanism in active SiOx-based resistive switching memory , 2012 .

[21]  Adnan Mehonic,et al.  Electrically tailored resistance switching in silicon oxide , 2012, Nanotechnology.

[22]  Yen-Ting Chen,et al.  Study of polarity effect in SiOx-based resistive switching memory , 2012 .

[23]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[24]  Anthony J. Kenyon,et al.  Resistive switching in silicon sub-oxide films , 2012 .

[25]  M. Murgia,et al.  Regenerable Resistive Switching in Silicon Oxide Based Nanojunctions , 2012, Advanced materials.

[26]  J. Tour,et al.  In situ imaging of the conducting filament in a silicon oxide resistive switch , 2011, Scientific Reports.

[27]  L. Goux,et al.  Understanding of the endurance failure in scaled HfO2-based 1T1R RRAM through vacancy mobility degradation , 2012, 2012 International Electron Devices Meeting.

[28]  Shih-Cheng Chen,et al.  Developments in nanocrystal memory , 2011 .

[29]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[30]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[31]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[32]  Yoshio Nishi,et al.  Role of Hydrogen Ions in TiO2-Based Memory Devices , 2011 .

[33]  Rainer Waser,et al.  Proton mobility in SiO 2 thin films and impact of hydrogen and humidity on the resistive switching effect , 2011 .

[34]  H. Hwang,et al.  Three‐Dimensional Integration of Organic Resistive Memory Devices , 2010, Advanced materials.

[35]  J. Tour,et al.  Resistive switches and memories from silicon oxide. , 2010, Nano letters.

[36]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[37]  Tae-Wook Kim,et al.  Rewritable Switching of One Diode–One Resistor Nonvolatile Organic Memory Devices , 2010, Advanced materials.

[38]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[39]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[40]  Xiaofan Luo,et al.  Molecular Electronics , 2009 .

[41]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[42]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[43]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[44]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[45]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[46]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[47]  Mark A. Ratner,et al.  Molecular electronics , 2005 .

[48]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[49]  M. Ieong,et al.  Silicon Device Scaling to the Sub-10-nm Regime , 2004, Science.

[50]  Ian A. Walmsley,et al.  Quantum Physics Under Control , 2003 .

[51]  Mark S. Lundstrom,et al.  APPLIED PHYSICS: Enhanced: Moore's Law Forever? , 2003 .

[52]  P. Blöchl First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen , 2000 .

[53]  T. A. Dang,et al.  Electron Spectroscopy for Chemical Analysis of Cool White Phosphors Coated with SiO2 Thin Film , 1996 .

[54]  L. Lozzi,et al.  XPS studies on SiOx thin films , 1993 .

[55]  F. Murad,et al.  Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[57]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  S. Sze,et al.  A floating gate and its application to memory devices , 1967 .

[59]  D. Lamb,et al.  A non-filamentary switching action in thermally grown silicon dioxide films , 1967 .

[60]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .