Modified Function Projective Synchronization for two Different Fractional-order Chaotic Systems with External Disturbances

This paper investigate the problem of modified function projective synchronization for two different fractional-order chaotic systems. An active control scheme is proposed based on the stability theory of fractional-order differential system. Then, a robust control method is proposed to achieve modified function projective synchronization for two different fractional-order chaotic systems with external disturbances. The proposed method is able to overcome all random uncertainties of the systems. Numerical examples are provided to show the effectiveness of proposed methods.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[3]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[4]  Wang Xing-Yuan,et al.  Modified function projective lag synchronization in fractional-order chaotic (hyperchaotic) systems , 2014 .

[5]  Lixiang Li,et al.  Finite-Time Function Projective Synchronization in Complex Multi-links Networks with Time-Varying Delay , 2013, Neural Processing Letters.

[6]  Hongyue Du Adaptive Open-Plus-Closed-Loop Control Method Of Modified Function Projective Synchronization In Complex Networks , 2011 .

[7]  K. Sudheer,et al.  Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters , 2010 .

[8]  Xing-yuan Wang,et al.  Hybrid robust modified function projective lag synchronization in two different dimensional chaotic systems , 2013 .

[9]  Qingshuang Zeng,et al.  A general method for modified function projective lag synchronization in chaotic systems , 2010 .

[10]  Haipeng Peng,et al.  Mean square modified function projective synchronization of uncertain complex network with multi-links and stochastic perturbations , 2015 .

[11]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[12]  Hongyue Du,et al.  Modified function projective synchronization of chaotic system , 2009 .

[13]  Wei Zhu,et al.  Function projective synchronization for fractional-order chaotic systems , 2011 .

[14]  S. M. Lee,et al.  Complex function projective synchronization of general networked chaotic systems by using complex adaptive fuzzy logic , 2015 .

[15]  Manuel A. Duarte-Mermoud,et al.  Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[16]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[18]  Guiyuan Fu,et al.  Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance , 2012 .

[19]  Wang Xing-Yuan,et al.  Adaptive modified function projective lag synchronization of hyperchaotic complex systems with fully uncertain parameters , 2014 .

[20]  Hongyue Du,et al.  Function projective synchronization in complex dynamical networks with or without external disturbances via error feedback control , 2016, Neurocomputing.

[21]  Jun Jiang,et al.  Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters , 2014, Commun. Nonlinear Sci. Numer. Simul..

[22]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .