Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus

The hemagglutinin (HA) structure at 2.9 angstrom resolution, from a highly pathogenic Vietnamese H5N1 influenza virus, is more related to the 1918 and other human H1 HAs than to a 1997 duck H5 HA. Glycan microarray analysis of this Viet04 HA reveals an avian α2-3 sialic acid receptor binding preference. Introduction of mutations that can convert H1 serotype HAs to human α2-6 receptor specificity only enhanced or reduced affinity for avian-type receptors. However, mutations that can convert avian H2 and H3 HAs to human receptor specificity, when inserted onto the Viet04 H5 HA framework, permitted binding to a natural human α2-6 glycan, which suggests a path for this H5N1 virus to gain a foothold in the human population.

[1]  R. Webster,et al.  Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. , 1994, Virology.

[2]  I. Wilson,et al.  Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity , 1983, Nature.

[3]  E B Wilson,et al.  On the physical basis of life , 2010 .

[4]  Yoshihiro Kawaoka,et al.  Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals , 2000, Journal of Virology.

[5]  Patrick Audebert,et al.  Ultrafast Laser-Driven Microlens to Focus and Energy-Select Mega-Electron Volt Protons , 2006, Science.

[6]  V. Hinshaw,et al.  Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus , 1990, Journal of virology.

[7]  A. Klimov,et al.  Evolution of the receptor binding phenotype of influenza A (H5) viruses. , 2006, Virology.

[8]  Nikolai V. Kaverin,et al.  Structural Differences among Hemagglutinins of Influenza A Virus Subtypes Are Reflected in Their Antigenic Architecture: Analysis of H9 Escape Mutants , 2004, Journal of Virology.

[9]  J. Yewdell,et al.  The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype) , 1982, Cell.

[10]  J. Paulson,et al.  Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. , 1990, Acta histochemica. Supplementband.

[11]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[12]  G. Strecker,et al.  Specificity of Twelve Lectins Towards Oligosaccharides and Glycopeptides Related to N‐Glycosylproteins , 2005 .

[13]  J. Ashby References and Notes , 1999 .

[14]  J. Lo-Guidice,et al.  Human airway mucin glycosylation: A combinatory of carbohydrate determinants which vary in cystic fibrosis , 2001, Glycoconjugate Journal.

[15]  Ken Isaacson,et al.  I I , 1982 .

[16]  Chi-Huey Wong,et al.  Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Ian A. Wilson,et al.  A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity , 2005, Journal of Virology.

[18]  A. Varki,et al.  Human-specific Regulation of α2–6-linked Sialic Acids* , 2003, Journal of Biological Chemistry.

[19]  Andrew C. R. Martin,et al.  Restrictions to the Adaptation of Influenza A Virus H5 Hemagglutinin to the Human Host , 2004, Journal of Virology.

[20]  David E. Swayne,et al.  Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus , 2005, Science.

[21]  Yi Guan,et al.  Lethality to Ferrets of H5N1 Influenza Viruses Isolated from Humans and Poultry in 2004 , 2005, Journal of Virology.

[22]  Ian A. Wilson,et al.  Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus , 2004, Science.

[23]  Yoshihiro Kawaoka,et al.  Sialic Acid Species as a Determinant of the Host Range of Influenza A Viruses , 2000, Journal of Virology.

[24]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[25]  J. Vliegenthart,et al.  Branch specificity of bovine colostrum CMP-sialic acid: Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyllactosamine type. , 1987, The Journal of biological chemistry.

[26]  H. Klenk,et al.  Human and avian influenza viruses target different cell types in cultures of human airway epithelium. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  V. Georgiev Virology , 1955, Nature.

[28]  W. J. Bean,et al.  Evolution of the hemagglutinin of equine H3 influenza viruses. , 1989, Virology.

[29]  Niall Johnson,et al.  Updating the Accounts: Global Mortality of the 1918-1920 "Spanish" Influenza Pandemic , 2002, Bulletin of the history of medicine.

[30]  G. N. Rogers,et al.  Receptor binding properties of human and animal H1 influenza virus isolates. , 1989, Virology.

[31]  N. Katunuma,et al.  Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. , 1992, The Journal of biological chemistry.

[32]  R. Webster,et al.  Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. , 2002, The Journal of general virology.

[33]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[34]  Thorsten Wolff,et al.  Importance of hemagglutinin glycosylation for the biological functions of influenza virus. , 2001, Virus research.

[35]  H. Klenk,et al.  Host cell proteases controlling virus pathogenicity. , 1994, Trends in microbiology.

[36]  I. Wilson,et al.  Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation , 1981, Nature.

[37]  D. J. Stevens,et al.  The Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin , 2004, Science.

[38]  Thomas A Kost,et al.  Baculovirus as versatile vectors for protein expression in insect and mammalian cells , 2005, Nature Biotechnology.

[39]  J. Paulson,et al.  Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. , 1983, Virology.

[40]  Albert D. M. E. Osterhaus,et al.  Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls , 2005, Journal of Virology.

[41]  D. Schneider To whom correspondence should be addressed , 2008 .

[42]  J. Skehel,et al.  Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. , 1994, Biochemistry.

[43]  C. Scholtissek,et al.  On the origin of the human influenza virus subtypes H2N2 and H3N2. , 1978, Virology.

[44]  N. Cox,et al.  Avian Influenza (H5N1) Viruses Isolated from Humans in Asia in 2004 Exhibit Increased Virulence in Mammals , 2005, Journal of Virology.

[45]  Ya Ha,et al.  H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes , 2002, The EMBO journal.

[46]  S. Baigent,et al.  Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. , 2001, Virus research.

[47]  D. Suarez,et al.  Structural features of the avian influenza virus hemagglutinin that influence virulence. , 2000, Veterinary microbiology.

[48]  R. Webster,et al.  Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Nobusawa,et al.  Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. , 2000, Virology.

[50]  Jeffery K. Taubenberger,et al.  Characterization of the 1918 influenza virus polymerase genes , 2005, Nature.

[51]  R. Webster,et al.  Molecular Determinants within the Surface Proteins Involved in the Pathogenicity of H5N1 Influenza Viruses in Chickens , 2004, Journal of Virology.

[52]  Keiji Fukuda,et al.  Evolution of H5N1 Avian Influenza Viruses in Asia , 2005, Emerging infectious diseases.

[53]  Yoshihiro Kawaoka,et al.  The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. , 2005, Annual review of microbiology.

[54]  Angus Nicoll,et al.  Avian influenza A (H5N1) infection in humans. , 2005, The New England journal of medicine.

[55]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[56]  James C Paulson,et al.  Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. , 2006, Journal of molecular biology.