Ansätze zur modellprädiktiven Regelung der longitudinalen Strahldynamik in Synchrotronen

Zusammenfassung Die Stabilisierung der longitudinalen Strahldynamik in Hadronensynchrotronen ist ein anspruchsvolles Regelungsproblem, da die erforderlichen Abtastzeiten des Regelkreises im Bereich von wenigen Mikrosekunden bis hin zu einigen hundert Nanosekunden liegen. In diesem Beitrag wird untersucht, ob modellprädiktive Verfahren für die Regelung der longitudinalen Strahldynamik eingesetzt werden können. Durch eine geeignete Problemformulierung und effiziente numerische Algorithmen kann das Optimierungsproblem hinreichend schnell auf einem High-End-FPGA gelöst werden. Simulationen für das Synchrotron SIS18 verdeutlichen, dass deutliche Performanzgewinne erreicht werden können.

[1]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[2]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[3]  Alberto Bemporad,et al.  Explicit Model Predictive Control , 2015, Encyclopedia of Systems and Control.

[4]  O. P. Lebedev,et al.  Analysis of the Feedback-Loop Stability in the RF System of the U-70 Synchrotron , 2002 .

[5]  Brett Ninness,et al.  Fast Linear Model Predictive Control Via Custom Integrated Circuit Architecture , 2012, IEEE Transactions on Control Systems Technology.

[6]  Arne Wahrburg,et al.  Using LMIs to optimize robustness of observer‐based state‐feedback for a synchrotron , 2014 .

[7]  Ulrich Laier,et al.  New digital low-level rf system for heavy-ion synchrotrons , 2011 .

[8]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[9]  Manfred Morari,et al.  Real-time input-constrained MPC using fast gradient methods , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[10]  John Hauser,et al.  On the stability of receding horizon control with a general terminal cost , 2005, IEEE Transactions on Automatic Control.

[11]  H. Klingbeil,et al.  A Digital Beam-Phase Control System for Heavy-Ion Synchrotrons , 2007, IEEE Transactions on Nuclear Science.

[12]  Christopher M. Kellett,et al.  Offset-free output feedback predictive control for longitudinal beam dynamics in heavy ion synchrotrons , 2014, 2014 4th Australian Control Conference (AUCC).

[13]  Ulrich Laier,et al.  Theoretical Foundations of Synchrotron and Storage Ring RF Systems , 2014 .

[14]  Rolf Findeisen,et al.  Event-based model predictive control for Networked Control Systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[15]  Christopher M. Kellett,et al.  Predictive control for longitudinal beam dynamics in heavy ion synchrotrons , 2014, 2014 IEEE Conference on Control Applications (CCA).

[16]  Mauro Migliorati,et al.  LONGITUDINAL COUPLED-BUNCH OSCILLATION STUDIES IN THE CERN PS , 2013 .

[17]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[18]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[19]  Harald Klingbeil,et al.  Stability of longitudinal bunch length feedback for heavy-ion synchrotrons , 2013 .

[20]  Rolf Findeisen,et al.  A fast gradient method for embedded linear predictive control , 2011 .

[21]  Manfred Morari,et al.  Linear offset-free Model Predictive Control , 2009, Autom..

[22]  R. C. Barrett Accelerator Physics , 1970, Nature.

[23]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[24]  Manfred Morari,et al.  Embedded Predictive Control on an FPGA using the Fast Gradient Method , 2013, 2013 European Control Conference (ECC).