Antimicrobial peptides: key components of the innate immune system

Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.

[1]  Marc Torrent,et al.  Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model , 2011, PloS one.

[2]  Bono Lučić,et al.  Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides , 2011, European Biophysics Journal.

[3]  S. Myung,et al.  Expression of human β‐defensin‐2 in the prostate , 2011, BJU international.

[4]  R. Hancock,et al.  Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli , 2010, Peptides.

[5]  Shuang-quan Zhang,et al.  Expression and purification of moricin CM4 and human β-defensins 4 in Escherichia coli using a new technology. , 2010, Microbiological research.

[6]  Seong-Cheol Park,et al.  Antibiotic and synergistic effect of Leu-Lys rich peptide against antibiotic resistant microorganisms isolated from patients with cholelithiasis. , 2010, Biochemical and biophysical research communications.

[7]  S. K. Shukla,et al.  Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. , 2010, Biochimie.

[8]  J. Wiesner,et al.  Antimicrobial peptides: The ancient arm of the human immune system , 2010, Virulence.

[9]  Chun Xing Li,et al.  Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. , 2010, Developmental and comparative immunology.

[10]  Y. Chuang,et al.  In vitro synergistic antimicrobial effect of imipenem and colistin against an isolate of multidrug-resistant Enterobacter cloacae. , 2010, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[11]  Themis Lazaridis,et al.  Antimicrobial peptides bind more strongly to membrane pores. , 2010, Biochimica et biophysica acta.

[12]  Themis Lazaridis,et al.  Antimicrobial peptides in toroidal and cylindrical pores. , 2010, Biochimica et biophysica acta.

[13]  A. Schmidtchen,et al.  C-terminal Peptides of Tissue Factor Pathway Inhibitor Are Novel Host Defense Molecules* , 2010, The Journal of Biological Chemistry.

[14]  Shuang-quan Zhang,et al.  Production of Bioactive Human Beta-Defensin-4 in Escherichia coli Using SUMO Fusion Partner , 2010, The protein journal.

[15]  R. Epand,et al.  Amphipathic helical cationic antimicrobial peptides promote rapid formation of crystalline states in the presence of phosphatidylglycerol: lipid clustering in anionic membranes. , 2010, Biophysical journal.

[16]  M. Cassone,et al.  Synergy among antibacterial peptides and between peptides and small-molecule antibiotics , 2010, Expert review of anti-infective therapy.

[17]  Giacomo Mancini,et al.  The Peptide Hemopressin Acts through CB1 Cannabinoid Receptors to Reduce Food Intake in Rats and Mice , 2010, The Journal of Neuroscience.

[18]  W. Shi,et al.  Systematic Approach to Optimizing Specifically Targeted Antimicrobial Peptides against Streptococcus mutans , 2010, Antimicrobial Agents and Chemotherapy.

[19]  D. Andersson,et al.  Mechanisms and physiological effects of protamine resistance in Salmonella enterica serovar Typhimurium LT2. , 2010, The Journal of antimicrobial chemotherapy.

[20]  A. Schmidtchen,et al.  Proteolysis of Human Thrombin Generates Novel Host Defense Peptides , 2010, PLoS pathogens.

[21]  Diarmaid Hughes,et al.  Antibiotic resistance and its cost: is it possible to reverse resistance? , 2010, Nature Reviews Microbiology.

[22]  Shunyi Zhu,et al.  Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective , 2010, BMC Genomics.

[23]  J. Schröder,et al.  Increased expression of human beta‐defensin 3 in mollusca contagiosum , 2010, Clinical and experimental dermatology.

[24]  Yoshiaki Nakagawa,et al.  A Novel Amphipathic Linear Peptide with Both Insect Toxicity and Antimicrobial Activity from the Venom of the Scorpion Isometrus maculatus , 2010, Bioscience, biotechnology, and biochemistry.

[25]  Y. Kato,et al.  An enhancer peptide for membrane-disrupting antimicrobial peptides , 2010, BMC Microbiology.

[26]  S. Rodziewicz-Motowidło,et al.  Antimicrobial and conformational studies of the active and inactive analogues of the protegrin‐1 peptide , 2010, The FEBS journal.

[27]  Yi Liu,et al.  Design, Recombinant Expression, and Antibacterial Activity of the Cecropins–Melittin Hybrid Antimicrobial Peptides , 2010, Current Microbiology.

[28]  K. Leszczynska,et al.  Cathelicidin LL-37: A Multitask Antimicrobial Peptide , 2010, Archivum Immunologiae et Therapiae Experimentalis.

[29]  F. Schweizer,et al.  Cationic amphiphilic peptides with cancer-selective toxicity. , 2009, European journal of pharmacology.

[30]  J. Bang,et al.  Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1 , 2009, Peptides.

[31]  D. Phoenix,et al.  Anionic antimicrobial peptides from eukaryotic organisms. , 2009, Current protein & peptide science.

[32]  Shreyas Karnik,et al.  CAMP: a useful resource for research on antimicrobial peptides , 2009, Nucleic Acids Res..

[33]  Constance Auvynet,et al.  Multifunctional host defense peptides: Antimicrobial peptides, the small yet big players in innate and adaptive immunity , 2009, The FEBS journal.

[34]  A. Schmidtchen,et al.  Antimicrobial Activity of Human Prion Protein Is Mediated by Its N-Terminal Region , 2009, PloS one.

[35]  L. Travassos,et al.  Antifungal and antitumor models of bioactive protective peptides. , 2009, Anais da Academia Brasileira de Ciencias.

[36]  A. Schmidtchen,et al.  Tryptophan end-tagging of antimicrobial peptides for increased potency against Pseudomonas aeruginosa. , 2009, Biochimica et biophysica acta.

[37]  L. Babiuk,et al.  A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. , 2009, Vaccine.

[38]  A. Schmidtchen,et al.  Antimicrobial activity of a C-terminal peptide from human extracellular superoxide dismutase , 2009, BMC Research Notes.

[39]  Aline Sandouk,et al.  Role of acetylation and charge in antimicrobial peptides based on human β‐defensin‐3 , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[40]  M. Palma,et al.  Interactions of mast cell degranulating peptides with model membranes: a comparative biophysical study. , 2009, Archives of biochemistry and biophysics.

[41]  P. Zipfel,et al.  Complement Activation Products C3a and C4a as Endogenous Antimicrobial Peptides , 2009, International Journal of Peptide Research and Therapeutics.

[42]  A. Schmidtchen,et al.  Boosting Antimicrobial Peptides by Hydrophobic Oligopeptide End Tags* , 2009, The Journal of Biological Chemistry.

[43]  Huey W. Huang Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. , 2009, Biophysical journal.

[44]  A. Schmidtchen,et al.  End-Tagging of Ultra-Short Antimicrobial Peptides by W/F Stretches to Facilitate Bacterial Killing , 2009, PloS one.

[45]  J. Bosch,et al.  Concentration and fate of histatins and acidic proline-rich proteins in the oral environment. , 2009, Archives of oral biology.

[46]  S. González-Chávez,et al.  Lactoferrin: structure, function and applications. , 2009, International journal of antimicrobial agents.

[47]  W. Yang,et al.  Characterization of a novel antibacterial glycopeptide produced by Penicillium sp. M03 , 2009, Letters in applied microbiology.

[48]  L. Babiuk,et al.  The novel adjuvant combination of CpG ODN, indolicidin and polyphosphazene induces potent antibody- and cell-mediated immune responses in mice. , 2009, Vaccine.

[49]  L. Babiuk,et al.  Strategies to link innate and adaptive immunity when designing vaccine adjuvants. , 2009, Veterinary immunology and immunopathology.

[50]  R. Gallo,et al.  AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. , 2009, Trends in immunology.

[51]  M. N. Melo,et al.  Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations , 2009, Nature Reviews Microbiology.

[52]  A. Figueras,et al.  Evidence of high individual diversity on myticin C in mussel (Mytilus galloprovincialis). , 2009, Developmental and comparative immunology.

[53]  Y. Guéguen,et al.  Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin. , 2009, Molecular immunology.

[54]  R. Hodges,et al.  Influence of preformed α-helix and α-helix induction on the activity of cationic antimicrobial peptides , 2009 .

[55]  R. Hancock,et al.  The roles of cathelicidin LL-37 in immune defences and novel clinical applications , 2009, Current opinion in hematology.

[56]  A. McDermott The Role of Antimicrobial Peptides at the Ocular Surface , 2008, Ophthalmic Research.

[57]  J. Potempa,et al.  Corruption of Innate Immunity by Bacterial Proteases , 2008, Journal of Innate Immunity.

[58]  Robert E W Hancock,et al.  Effects of Hydrophobicity on the Antifungal Activity of α‐Helical Antimicrobial Peptides , 2008, Chemical biology & drug design.

[59]  A. Schmidtchen,et al.  Evaluation of Strategies for Improving Proteolytic Resistance of Antimicrobial Peptides by Using Variants of EFK17, an Internal Segment of LL-37 , 2008, Antimicrobial Agents and Chemotherapy.

[60]  T. Dandekar,et al.  New trends in pharmacogenomic strategies against resistance development in microbial infections. , 2008, Pharmacogenomics.

[61]  M. Leippe,et al.  Hydramacin-1, Structure and Antibacterial Activity of a Protein from the Basal Metazoan Hydra* , 2008, Journal of Biological Chemistry.

[62]  S. C. Kim,et al.  Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. , 2008, Cancer letters.

[63]  E. Veerman,et al.  Histatins are the major wound‐closure stimulating factors in human saliva as identified in a cell culture assay , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[64]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[65]  M. Selsted,et al.  Isolation, Synthesis, and Antimicrobial Activities of Naturally Occurring θ-Defensin Isoforms from Baboon Leukocytes , 2008, Infection and Immunity.

[66]  Yun Zhang,et al.  Identification and characterization of novel reptile cathelicidins from elapid snakes , 2008, Peptides.

[67]  Hailong Yang,et al.  Snake Cathelicidin from Bungarus fasciatus Is a Potent Peptide Antibiotics , 2008, PloS one.

[68]  A. N. Larsen,et al.  Identification, cloning and expression analysis of a hepcidin cDNA of the Atlantic cod (Gadus morhua L.). , 2008, Fish & shellfish immunology.

[69]  H. Naderi-manesh,et al.  PCR-based Gene Synthesis, Molecular Cloning, High Level Expression, Purification, and Characterization of Novel Antimicrobial Peptide, Brevinin-2R, in Escherichia Coli , 2008, Applied biochemistry and biotechnology.

[70]  A. Schmidtchen,et al.  Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach. , 2008, Biochemistry.

[71]  Martin Malmsten,et al.  Histidine-Rich Glycoprotein Protects from Systemic Candida Infection , 2008, PLoS pathogens.

[72]  H. Khandelia,et al.  The impact of peptides on lipid membranes. , 2008, Biochimica et biophysica acta.

[73]  Yiannis N. Kaznessis,et al.  Correlation between simulated physicochemical properties and hemolycity of protegrin-like antimicrobial peptides: Predicting experimental toxicity , 2008, Peptides.

[74]  M. Ward,et al.  Staphylococcus aureus clumping factor A binds to complement regulator factor I and increases factor I cleavage of C3b. , 2008, The Journal of infectious diseases.

[75]  H. Benson,et al.  Skin peptides: biological activity and therapeutic opportunities. , 2008, Journal of pharmaceutical sciences.

[76]  D. Andersson,et al.  Mechanism and Fitness Costs of PR-39 Resistance in Salmonella enterica Serovar Typhimurium LT2 , 2008, Antimicrobial Agents and Chemotherapy.

[77]  E. Veerman,et al.  Human antimicrobial peptide histatin 5 is a cell‐ penetrating peptide targeting mitochondrial ATP synthesis in Leishmania , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[78]  S. Qian,et al.  Structure of the alamethicin pore reconstructed by x-ray diffraction analysis. , 2008, Biophysical journal.

[79]  Shengwang Liu,et al.  Expression and characterization of recombinant gallinacin-9 and gallinacin-8 in Escherichia coli. , 2008, Protein expression and purification.

[80]  T. K. Maiti,et al.  Targeting tumors with peptides from natural sources. , 2008, Trends in biotechnology.

[81]  G. A. Somkuti,et al.  Cloning of milk-derived bioactive peptides in Streptococcus thermophilus , 2008, Biotechnology Letters.

[82]  S. C. Kim,et al.  High-level expression of an antimicrobial peptide histonin as a natural form by multimerization and furin-mediated cleavage , 2008, Applied Microbiology and Biotechnology.

[83]  D. Hoskin,et al.  Studies on anticancer activities of antimicrobial peptides. , 2008, Biochimica et biophysica acta.

[84]  W. Florio,et al.  Evaluation of the inhibitory effects of human serum components on bactericidal activity of human beta defensin 3 , 2008, Peptides.

[85]  Artem Cherkasov,et al.  QSAR modeling and computer‐aided design of antimicrobial peptides , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[86]  M. Torres,et al.  Expression of Cathelicidin LL-37 during Mycobacterium tuberculosis Infection in Human Alveolar Macrophages, Monocytes, Neutrophils, and Epithelial Cells , 2007, Infection and Immunity.

[87]  M. Selsted,et al.  Microbicidal Properties and Cytocidal Selectivity of Rhesus Macaque Theta Defensins , 2007, Antimicrobial Agents and Chemotherapy.

[88]  A. Magill,et al.  Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. , 2007, Journal of medicinal chemistry.

[89]  D. Sturdevant,et al.  The antimicrobial peptide‐sensing system aps of Staphylococcus aureus , 2007, Molecular microbiology.

[90]  Barrie Wilkinson,et al.  Drug discovery beyond the 'rule-of-five'. , 2007, Current opinion in biotechnology.

[91]  R. Hancock,et al.  Alternative mechanisms of action of cationic antimicrobial peptides on bacteria , 2007, Expert review of anti-infective therapy.

[92]  A. Schmidtchen,et al.  Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. , 2007, Biochimica et biophysica acta.

[93]  R. Hancock The complexities of antibiotic action , 2007, Molecular systems biology.

[94]  Y. Shai,et al.  Conolysin-Mt: a conus peptide that disrupts cellular membranes. , 2007, Biochemistry.

[95]  J. Willey,et al.  Lantibiotics: peptides of diverse structure and function. , 2007, Annual review of microbiology.

[96]  A. Telenti,et al.  Innate immunogenetics: a tool for exploring new frontiers of host defence , 2007, The Lancet Infectious Diseases.

[97]  V. Nizet Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. , 2007, The Journal of allergy and clinical immunology.

[98]  D. Sturdevant,et al.  Gram-positive three-component antimicrobial peptide-sensing system , 2007, Proceedings of the National Academy of Sciences.

[99]  G. Pirri,et al.  Antimicrobial peptides: an overview of a promising class of therapeutics , 2007, Central European Journal of Biology.

[100]  K. Sayama,et al.  Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. , 2007, The Journal of investigative dermatology.

[101]  R. Hancock,et al.  Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections , 2007, Cellular and Molecular Life Sciences.

[102]  R. Kini,et al.  Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. , 2007, The Biochemical journal.

[103]  R. Lehrer,et al.  The innate immune system: a repository for future drugs? , 2007, Expert review of anti-infective therapy.

[104]  I. Nagaoka,et al.  Antimicrobial peptides human β‐defensin (hBD)‐3 and hBD‐4 activate mast cells and increase skin vascular permeability , 2007, European journal of immunology.

[105]  A. Schmidtchen,et al.  Preservation of Antimicrobial Properties of Complement Peptide C3a, from Invertebrates to Humans* , 2007, Journal of Biological Chemistry.

[106]  Björn Walse,et al.  Antimicrobial peptides derived from growth factors , 2007, Growth factors.

[107]  A. Schmidtchen,et al.  Histidine‐rich glycoprotein exerts antibacterial activity , 2007, The FEBS journal.

[108]  D. Sturdevant,et al.  The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci , 2007, Molecular microbiology.

[109]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[110]  M. Malmsten,et al.  The contact system—a novel branch of innate immunity generating antibacterial peptides , 2006, The EMBO journal.

[111]  M. Hamann,et al.  Cyclic heptapeptides from the Jamaican sponge Stylissa caribica. , 2006, Journal of natural products.

[112]  G. Asensio,et al.  The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. , 2006, Bioorganic & medicinal chemistry.

[113]  R. Hancock,et al.  Antibacterial peptides for therapeutic use: obstacles and realistic outlook. , 2006, Current opinion in pharmacology.

[114]  Y. Shai,et al.  A Synergism between Temporins toward Gram-negative Bacteria Overcomes Resistance Imposed by the Lipopolysaccharide Protective Layer* , 2006, Journal of Biological Chemistry.

[115]  V. Kokryakov,et al.  Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. , 2006, Biochemical and biophysical research communications.

[116]  K. Dyer,et al.  The RNase a superfamily: Generation of diversity and innate host defense , 2006, Molecular Diversity.

[117]  Vladimir Frecer,et al.  QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. , 2006, Bioorganic & medicinal chemistry.

[118]  Ayyalusamy Ramamoorthy,et al.  LL-37, the only human member of the cathelicidin family of antimicrobial peptides. , 2006, Biochimica et biophysica acta.

[119]  M. Yeaman,et al.  Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. , 2006, Biochimica et biophysica acta.

[120]  K. Henzler-Wildman,et al.  Expression and purification of a recombinant LL-37 from Escherichia coli. , 2006, Biochimica et biophysica acta.

[121]  Huey W. Huang Molecular mechanism of antimicrobial peptides: the origin of cooperativity. , 2006, Biochimica et biophysica acta.

[122]  V. Everts,et al.  Role of Polymorphonuclear Leukocyte-Derived Serine Proteinases in Defense against Actinobacillus actinomycetemcomitans , 2006, Infection and Immunity.

[123]  Alessandro Tossi,et al.  Evolution of the Primate Cathelicidin , 2006, Journal of Biological Chemistry.

[124]  R. Hancock,et al.  Peptide Antimicrobial Agents , 2006, Clinical Microbiology Reviews.

[125]  H. Sahl,et al.  The co-evolution of host cationic antimicrobial peptides and microbial resistance , 2006, Nature Reviews Microbiology.

[126]  Olivier Taboureau,et al.  Design of Novispirin Antimicrobial Peptides by Quantitative Structure–Activity Relationship , 2006, Chemical biology & drug design.

[127]  D. Hoover,et al.  Human β-defensins , 2006, Cellular and Molecular Life Sciences CMLS.

[128]  J. Malm,et al.  Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin. A NOVEL MECHANISM OF GENERATING ANTIMICROBIAL PEPTIDES IN VAGINA. VOLUME 278 (2003) PAGES 28540-28546 , 2006, Journal of Biological Chemistry.

[129]  P. Yu,et al.  Identification of three novel ostricacins: an update on the phylogenetic perspective of β-defensins , 2006 .

[130]  S. Fernando,et al.  Identification and Functional Characterization of Three Chicken Cathelicidins with Potent Antimicrobial Activity* , 2006, Journal of Biological Chemistry.

[131]  Graham Bell,et al.  Experimental evolution of resistance to an antimicrobial peptide , 2006, Proceedings of the Royal Society B: Biological Sciences.

[132]  V. Nizet,et al.  The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[133]  T. Cleveland,et al.  Plant-derived antifungal proteins and peptides. , 2005, Canadian journal of microbiology.

[134]  M. B. Banaszak Holl,et al.  Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. , 2005, Biophysical journal.

[135]  I. Nagaoka,et al.  Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. , 2005, Journal of dermatological science.

[136]  G. J. Swaminathan,et al.  Eosinophil-granule major basic protein, a C-type lectin, binds heparin. , 2005, Biochemistry.

[137]  P. Valenti,et al.  Lactoferrin , 2005, Cellular and Molecular Life Sciences.

[138]  R. Shaykhiev,et al.  Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. , 2005, American journal of physiology. Lung cellular and molecular physiology.

[139]  Gifford Jl,et al.  Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. , 2005 .

[140]  M. Hulett,et al.  Histidine-rich Glycoprotein Specifically Binds to Necrotic Cells via Its Amino-terminal Domain and Facilitates Necrotic Cell Phagocytosis* , 2005, Journal of Biological Chemistry.

[141]  A. Schmidtchen,et al.  Domain 5 of High Molecular Weight Kininogen Is Antibacterial* , 2005, Journal of Biological Chemistry.

[142]  Olivier Taboureau,et al.  Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus , 2005, Nature.

[143]  C. Deber,et al.  Basis for Selectivity of Cationic Antimicrobial Peptides for Bacterial Versus Mammalian Membranes* , 2005, Journal of Biological Chemistry.

[144]  A. Yoshimura,et al.  Induction of Keratinocyte Migration via Transactivation of the Epidermal Growth Factor Receptor by the Antimicrobial Peptide LL-371 , 2005, The Journal of Immunology.

[145]  Roland Contreras,et al.  Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins , 2005, Biotechnology Letters.

[146]  Z. Figaszewski,et al.  Changes in electric charge and phospholipids composition in human colorectal cancer cells , 2005, Molecular and Cellular Biochemistry.

[147]  E. Veldhuizen,et al.  CMAP27, a novel chicken cathelicidin-like antimicrobial protein. , 2005, Veterinary immunology and immunopathology.

[148]  M. Andrés,et al.  Different Anti-Candida Activities of Two Human Lactoferrin-Derived Peptides, Lfpep and Kaliocin-1 , 2005, Antimicrobial Agents and Chemotherapy.

[149]  Y. Shai,et al.  pH-dependent antifungal lipopeptides and their plausible mode of action. , 2005, Biochemistry.

[150]  B. Meyer,et al.  Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. , 2005, Biochemistry.

[151]  H. Vogel,et al.  Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[152]  M. Selsted,et al.  Mammalian defensins in the antimicrobial immune response , 2005, Nature Immunology.

[153]  R. Hancock,et al.  Immunomodulatory Activities of Small Host Defense Peptides , 2005, Antimicrobial Agents and Chemotherapy.

[154]  M. Hulett,et al.  Histidine‐rich glycoprotein: A novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems , 2005, Immunology and cell biology.

[155]  D. Davidson,et al.  Impact of LL‐37 on anti‐infective immunity , 2005, Journal of leukocyte biology.

[156]  R. Hancock Mechanisms of action of newer antibiotics for Gram-positive pathogens. , 2005, The Lancet. Infectious diseases.

[157]  D. Hultmark,et al.  Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. , 2005, European journal of biochemistry.

[158]  Y. Kaznessis,et al.  Protegrin structure–activity relationships: using homology models of synthetic sequences to determine structural characteristics important for activity , 2005, Peptides.

[159]  M. Zanetti,et al.  The cathelicidins--structure, function and evolution. , 2005, Current protein & peptide science.

[160]  Robert E W Hancock,et al.  A re-evaluation of the role of host defence peptides in mammalian immunity. , 2005, Current protein & peptide science.

[161]  E. Romanowski,et al.  A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs , 2005, Current eye research.

[162]  Yufeng Yao,et al.  A Crucial Role for Exopolysaccharide Modification in Bacterial Biofilm Formation, Immune Evasion, and Virulence* , 2004, Journal of Biological Chemistry.

[163]  L. Björck,et al.  α2-Macroglobulin-Proteinase Complexes Protect Streptococcus pyogenes from Killing by the Antimicrobial Peptide LL-37* , 2004, Journal of Biological Chemistry.

[164]  W. Shafer,et al.  Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus-Derived Proteinases , 2004, Antimicrobial Agents and Chemotherapy.

[165]  C. Aranha,et al.  Antimicrobial peptides: premises and promises. , 2004, International journal of antimicrobial agents.

[166]  Artur,et al.  Activation of the complement system generates antibacterial peptides , 2004 .

[167]  M. Dathe,et al.  Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization. , 2004, The journal of peptide research : official journal of the American Peptide Society.

[168]  M. Buschle,et al.  The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. , 2004, Vaccine.

[169]  G. Zheng,et al.  Expression of bioactive recombinant GSLL-39, a variant of human antimicrobial peptide LL-37, in Escherichia coli. , 2004, Protein expression and purification.

[170]  B. Ho,et al.  De Novo Design of Potent Antimicrobial Peptides , 2004, Antimicrobial Agents and Chemotherapy.

[171]  D. Shaw,et al.  Peptides Derived from the Histidine-Proline Domain of the Histidine-Proline-Rich Glycoprotein Bind to Tropomyosin and Have Antiangiogenic and Antitumor Activities , 2004, Cancer Research.

[172]  W. Kamysz,et al.  Potential therapeutic role of histatin derivative P-113d in experimental rat models of Pseudomonas aeruginosa sepsis. , 2004, The Journal of infectious diseases.

[173]  Gaetano T Montelione,et al.  Cold-shock induced high-yield protein production in Escherichia coli , 2004, Nature Biotechnology.

[174]  M. Dathe,et al.  Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. , 2004, Biochemistry.

[175]  P. F. Almeida,et al.  Kinetics of Dye Efflux and Lipid Flip-Flop Induced by δ-Lysin in Phosphatidylcholine Vesicles and the Mechanism of Graded Release by Amphipathic, α-Helical Peptides† , 2004 .

[176]  J. Svendsen,et al.  Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins , 2004, Journal of peptide science : an official publication of the European Peptide Society.

[177]  Yun-Bae Kim,et al.  Helix Stability Confers Salt Resistance upon Helical Antimicrobial Peptides* , 2004, Journal of Biological Chemistry.

[178]  J. Clifford,et al.  Epidermal Growth Factor Receptor-Mediated Activation of Stat3 during Multistage Skin Carcinogenesis , 2004, Cancer Research.

[179]  Zhenjun Sun,et al.  Purification of a novel antibacterial short peptide in earthworm Eisenia foetida. , 2004, Acta biochimica et biophysica Sinica.

[180]  D. Hoover,et al.  Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. , 2004, Annual review of immunology.

[181]  K. Kavanagh,et al.  Histatins: antimicrobial peptides with therapeutic potential , 2004, The Journal of pharmacy and pharmacology.

[182]  A. Schmidtchen,et al.  Antimicrobial activities of heparin-binding peptides. , 2004, European journal of biochemistry.

[183]  Michael Otto,et al.  Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system , 2004, Cellular microbiology.

[184]  F. Ge,et al.  Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis grube and its partial characterization. , 2004, Journal of biochemistry.

[185]  A. Olsson,et al.  A Fragment of Histidine-Rich Glycoprotein Is a Potent Inhibitor of Tumor Vascularization , 2004, Cancer Research.

[186]  M. Zanetti Cathelicidins, multifunctional peptides of the innate immunity , 2004, Journal of leukocyte biology.

[187]  G. Arenas,et al.  Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology , 2003 .

[188]  J. Cronan Bacterial membrane lipids: where do we stand? , 2003, Annual review of microbiology.

[189]  R. Hancock,et al.  Structure-based design of an indolicidin peptide analogue with increased protease stability. , 2003, Biochemistry.

[190]  P. McCray,et al.  Antimicrobial peptides in animals and their role in host defences. , 2003, International journal of antimicrobial agents.

[191]  M. Zasloff,et al.  Hagfish intestinal antimicrobial peptides are ancient cathelicidins , 2003, Peptides.

[192]  R. Hancock,et al.  The relationship between peptide structure and antibacterial activity , 2003, Peptides.

[193]  Webb Miller,et al.  Multispecies comparative analysis of a mammalian-specific genomic domain encoding secretory proteins. , 2003, Genomics.

[194]  P. Markwick,et al.  Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. , 2003, Biochemistry.

[195]  A. McDermott,et al.  Expression of human β-defensins in conjunctival epithelium : relevance to dry eye disease , 2003 .

[196]  J. Malm,et al.  Processing of Seminal Plasma hCAP-18 to ALL-38 by Gastricsin , 2003, Journal of Biological Chemistry.

[197]  Y. Lim,et al.  α-Defensin 1 (Human Neutrophil Protein 1) as an Antichemotactic Agent for Human Polymorphonuclear Leukocytes , 2003, Antimicrobial Agents and Chemotherapy.

[198]  T. Ganz Faculty Opinions recommendation of Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. , 2003 .

[199]  D. Hoover,et al.  Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[200]  S. Zahler,et al.  An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. , 2003, The Journal of clinical investigation.

[201]  Hongxia Zhao Mode of Action of Antimicrobial Peptides , 2003 .

[202]  G. K. Johnson,et al.  Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. , 2003, Oral microbiology and immunology.

[203]  E. Noga,et al.  Piscidins: a novel family of peptide antibiotics from fish. , 2003, Drug news & perspectives.

[204]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[205]  T. Ng,et al.  Isolation of a large thaumatin-like antifungal protein from seeds of the Kweilin chestnut Castanopsis chinensis. , 2003, Biochemical and biophysical research communications.

[206]  Jianzhi Zhang,et al.  Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. , 2003, Nucleic acids research.

[207]  V. Smith,et al.  Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. , 2002, The Biochemical journal.

[208]  J. Schröder,et al.  RNase 7, a Novel Innate Immune Defense Antimicrobial Protein of Healthy Human Skin* , 2002, The Journal of Biological Chemistry.

[209]  M. Salton,et al.  Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. , 2002, The Journal of antimicrobial chemotherapy.

[210]  D. Combs,et al.  Albumin affinity tags increase peptide half-life in vivo. , 2002, Bioorganic & medicinal chemistry letters.

[211]  R. Hancock,et al.  The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses1 , 2002, The Journal of Immunology.

[212]  A. Schmidtchen,et al.  Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL‐37 , 2002, Molecular microbiology.

[213]  Min Zhang,et al.  Albumin Binding as a General Strategy for Improving the Pharmacokinetics of Proteins* , 2002, The Journal of Biological Chemistry.

[214]  P. Nibbering,et al.  Expression of β‐defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells , 2002 .

[215]  Norbert Sewald,et al.  Peptides: Chemistry and Biology: Sewald: Peptides E-BK , 2002 .

[216]  M. Goodman,et al.  New reagents, reactions, and peptidomimetics for drug design. , 2002, Biopolymers.

[217]  Tae Gwan Park,et al.  Pegylated recombinant human epidermal growth factor (rhEGF) for sustained release from biodegradable PLGA microspheres. , 2002, Biomaterials.

[218]  C. Soto,et al.  Converting a peptide into a drug: strategies to improve stability and bioavailability. , 2002, Current medicinal chemistry.

[219]  Andreas Peschel,et al.  How do bacteria resist human antimicrobial peptides? , 2002, Trends in microbiology.

[220]  Jürg Müller,et al.  Cupiennin 1, a New Family of Highly Basic Antimicrobial Peptides in the Venom of the Spider Cupiennius salei(Ctenidae)* , 2002, The Journal of Biological Chemistry.

[221]  O. Levy,et al.  Lipid mediator-induced expression of bactericidal/ permeability-increasing protein (BPI) in human mucosal epithelia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[222]  R. Hancock,et al.  Sublethal Concentrations of Pleurocidin-Derived Antimicrobial Peptides Inhibit Macromolecular Synthesis in Escherichia coli , 2002, Antimicrobial Agents and Chemotherapy.

[223]  O. Yang,et al.  Retrocyclin: A primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[224]  Jesse D. Walters,et al.  Discovery of five conserved β-defensin gene clusters using a computational search strategy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[225]  M. Dathe,et al.  General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. , 2002, Biochimica et biophysica acta.

[226]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[227]  T. Ganz,et al.  Cathelicidins: a family of endogenous antimicrobial peptides , 2002, Current opinion in hematology.

[228]  Nikolaus Blin,et al.  Dermcidin: a novel human antibiotic peptide secreted by sweat glands , 2001, Nature Immunology.

[229]  A. Tossi,et al.  Amphipathic alpha helical antimicrobial peptides. , 2001, European journal of biochemistry.

[230]  A. Schmidtchen,et al.  Differential proteinase expression by Pseudomonas aeruginosa derived from chronic leg ulcers. , 2001, Acta dermato-venereologica.

[231]  Alessandro Tossi,et al.  Amphipathic α helical antimicrobial peptides. , 2001 .

[232]  R. Hancock,et al.  Cationic peptides: effectors in innate immunity and novel antimicrobials. , 2001, The Lancet. Infectious diseases.

[233]  R. Hancock,et al.  Interaction of Cationic Antimicrobial Peptides with Model Membranes* , 2001, The Journal of Biological Chemistry.

[234]  I. Nagaoka,et al.  Cathelicidin Family of Antibacterial Peptides CAP18 and CAP11 Inhibit the Expression of TNF-α by Blocking the Binding of LPS to CD14+ Cells1 , 2001, The Journal of Immunology.

[235]  Michael Bienert,et al.  Optimization of the antimicrobial activity of magainin peptides by modification of charge , 2001, FEBS letters.

[236]  J. Calafat,et al.  Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. , 2001, Blood.

[237]  J. Rossier,et al.  Ponericins, New Antibacterial and Insecticidal Peptides from the Venom of the Ant Pachycondyla goeldii * , 2001, The Journal of Biological Chemistry.

[238]  Michael Otto,et al.  Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine , 2001, The Journal of experimental medicine.

[239]  P. Friden,et al.  Anticandida Activity Is Retained in P-113, a 12-Amino-Acid Fragment of Histatin 5 , 2001, Antimicrobial Agents and Chemotherapy.

[240]  Arie V. Nieuw Amerongen,et al.  Antimicrobial Peptides: Properties and Applicability , 2001, Biological chemistry.

[241]  S. Lovas,et al.  The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. , 2001, Biochemistry.

[242]  C. Vogelmeier,et al.  Rhesus Monkey (Macaca mulatta) Mucosal Antimicrobial Peptides Are Close Homologues of Human Molecules , 2001, Clinical Diagnostic Laboratory Immunology.

[243]  R. Lanot,et al.  Insect Immunity , 2001, The Journal of Biological Chemistry.

[244]  A. Schmidtchen,et al.  Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial α‐defensin , 2001, Molecular microbiology.

[245]  R. Hancock,et al.  Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. , 2000, Biochemistry.

[246]  H. Jörnvall,et al.  The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. , 2000, Blood.

[247]  M. Welsh,et al.  Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. , 2000, American journal of physiology. Lung cellular and molecular physiology.

[248]  S. Lovas,et al.  Interaction between heat shock proteins and antimicrobial peptides. , 2000, Biochemistry.

[249]  R I Lehrer,et al.  Crystallization of antimicrobial pores in membranes: magainin and protegrin. , 2000, Biophysical journal.

[250]  K. Matsuzaki,et al.  Polar Angle as a Determinant of Amphipathic α-Helix-Lipid Interactions: A Model Peptide Study , 2000 .

[251]  B. Finlay,et al.  An α-Helical Cationic Antimicrobial Peptide Selectively Modulates Macrophage Responses to Lipopolysaccharide and Directly Alters Macrophage Gene Expression1 , 2000, The Journal of Immunology.

[252]  R. Hancock Cationic antimicrobial peptides: towards clinical applications , 2000, Expert opinion on investigational drugs.

[253]  P. Bulet,et al.  Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda) , 2000, Cellular and Molecular Life Sciences CMLS.

[254]  William C. Parks,et al.  Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria , 2000, Nature Immunology.

[255]  H. Lilja,et al.  The Human Cationic Antimicrobial Protein (hCAP-18) Is Expressed in the Epithelium of Human Epididymis, Is Present in Seminal Plasma at High Concentrations, and Is Attached to Spermatozoa , 2000, Infection and Immunity.

[256]  A. Angelova,et al.  Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures. , 2000, Archives of biochemistry and biophysics.

[257]  H. G. Boman Innate immunity and the normal microflora , 2000, Immunological reviews.

[258]  R. Hancock,et al.  Cutting Edge: Cationic Antimicrobial Peptides Block the Binding of Lipopolysaccharide (LPS) to LPS Binding Protein1 , 2000, The Journal of Immunology.

[259]  R. Colman,et al.  Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. , 2000, Blood.

[260]  K. Matsuzaki Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. , 1999, Biochimica et biophysica acta.

[261]  R. Nagaraj,et al.  Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. , 1999, Biochimica et biophysica acta.

[262]  C. Toniolo,et al.  The antimicrobial peptide trichogin and its interaction with phospholipid membranes. , 1999, European journal of biochemistry.

[263]  James M. Wilson,et al.  Augmentation of Innate Host Defense by Expression of a Cathelicidin Antimicrobial Peptide , 1999, Infection and Immunity.

[264]  Christopher J. Miller,et al.  Isolation, Characterization, cDNA Cloning, and Antimicrobial Properties of Two Distinct Subfamilies of α-Defensins from Rhesus Macaque Leukocytes , 1999, Infection and Immunity.

[265]  F C Kafatos,et al.  Phylogenetic perspectives in innate immunity. , 1999, Science.

[266]  P. Wong,et al.  Interaction of tannin with human salivary histatins. , 1999, Journal of agricultural and food chemistry.

[267]  M. Lafleur,et al.  Nisin promotes the formation of non-lamellar inverted phases in unsaturated phosphatidylethanolamines. , 1999, Biochimica et biophysica acta.

[268]  James M. Wilson,et al.  The innate immune system in cystic fibrosis lung disease. , 1999, The Journal of clinical investigation.

[269]  E. Greenberg,et al.  Production of β-defensins by human airway epithelia , 1998 .

[270]  P. Balaram,et al.  Omega amino acids in peptide design: incorporation into helices. , 1998, Biopolymers.

[271]  J. Larrick,et al.  Evaluation of Antimicrobial and Lipopolysaccharide-Neutralizing Effects of a Synthetic CAP18 Fragment against Pseudomonas aeruginosa in a Mouse Model , 1998, Antimicrobial Agents and Chemotherapy.

[272]  W. Müller,et al.  Sarcophytolide: a new neuroprotective compound from the soft coral Sarcophyton glaucum. , 1998, Toxicology.

[273]  C. B. Park,et al.  Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. , 1998, Biochimica et biophysica acta.

[274]  Samuel I. Miller,et al.  Lipid A Acylation and Bacterial Resistance against Vertebrate Antimicrobial Peptides , 1998, Cell.

[275]  E. Pauwels,et al.  Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. , 1998, The Journal of clinical investigation.

[276]  J. Bland,et al.  Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. , 1998, Medical mycology.

[277]  V. Bafna,et al.  Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. , 1998, The Journal of clinical investigation.

[278]  Alan J. Waring,et al.  Activities of LL-37, a Cathelin-Associated Antimicrobial Peptide of Human Neutrophils , 1998, Antimicrobial Agents and Chemotherapy.

[279]  P. H. Hansen,et al.  Secretory expression of human albumin domains in Saccharomyces cerevisiae and their binding of myristic acid and an acylated insulin analogue. , 1998, Protein expression and purification.

[280]  T. Cleveland,et al.  Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. , 1998, Canadian journal of microbiology.

[281]  M. Heinzelmann,et al.  Heparin-binding protein (CAP37) is internalized in monocytes and increases LPS-induced monocyte activation. , 1998, Journal of immunology.

[282]  R. Lehrer,et al.  Activity of Protegrins against Yeast-PhaseCandida albicans , 1998, Infection and Immunity.

[283]  C. B. Park,et al.  Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. , 1998, Biochemical and biophysical research communications.

[284]  C. Subbalakshmi,et al.  Mechanism of antimicrobial action of indolicidin. , 1998, FEMS microbiology letters.

[285]  James M. Wilson,et al.  Mouse β-Defensin 1 Is a Salt-Sensitive Antimicrobial Peptide Present in Epithelia of the Lung and Urogenital Tract , 1998, Infection and Immunity.

[286]  K. Berndt,et al.  Conformation-dependent Antibacterial Activity of the Naturally Occurring Human Peptide LL-37* , 1998, The Journal of Biological Chemistry.

[287]  R. Hancock,et al.  Cationic peptides: a new source of antibiotics. , 1998, Trends in biotechnology.

[288]  A. Salyers,et al.  Why are antibiotic resistance genes so resistant to elimination? , 1997, Antimicrobial agents and chemotherapy.

[289]  R. Epand,et al.  Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. , 1997, Biochemistry.

[290]  P. Axelsen,et al.  The concentration-dependent membrane activity of cecropin A. , 1997, Biochemistry.

[291]  Y. Kirino,et al.  Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. , 1997, Biochemistry.

[292]  R. Murali,et al.  Therapeutic peptides and peptidomimetics. , 1997, Current opinion in biotechnology.

[293]  H. Heng,et al.  The human β-defensin-1 and α-defensins are encoded by adjacent genes : Two peptide families with differing disulfide topology share a common ancestry , 1997 .

[294]  H. Wigzell,et al.  The Expression of the Gene Coding for the Antibacterial Peptide LL-37 Is Induced in Human Keratinocytes during Inflammatory Disorders* , 1997, The Journal of Biological Chemistry.

[295]  Jiang Hong,et al.  A Repertoire of Novel Antibacterial Diastereomeric Peptides with Selective Cytolytic Activity* , 1997, The Journal of Biological Chemistry.

[296]  G. Diamond,et al.  Isolation and Characterization of Pleurocidin, an Antimicrobial Peptide in the Skin Secretions of Winter Flounder* , 1997, The Journal of Biological Chemistry.

[297]  M. Dathe,et al.  Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides , 1997, FEBS letters.

[298]  J. Gesell,et al.  Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution , 1997, Journal of biomolecular NMR.

[299]  W. Shafer,et al.  Protegrin structure and activity against Neisseria gonorrhoeae , 1997, Infection and immunity.

[300]  P. Fehlbaum,et al.  Characterization of Novel Cysteine-rich Antimicrobial Peptides from Scorpion Blood* , 1996, The Journal of Biological Chemistry.

[301]  L. Bagella,et al.  Biological Characterization of Two Novel Cathelicidin-derived Peptides and Identification of Structural Requirements for Their Antimicrobial and Cell Lytic Activities* , 1996, The Journal of Biological Chemistry.

[302]  R. Prasad,et al.  Lipids of Pathogenic Fungi , 1996 .

[303]  London Wc,et al.  De Novo Antimicrobial Peptides with Low Mammalian Cell Toxicity , 1996 .

[304]  L. Thim,et al.  Characterization of recombinant human HBP/CAP37/azurocidin, a pleiotropic mediator of inflammation‐enhancing LPS‐induced cytokine release from monocytes , 1996, FEBS letters.

[305]  A. Ouellette,et al.  Positional specificity of defensin gene expression reveals Paneth cell heterogeneity in mouse small intestine. , 1996, The American journal of physiology.

[306]  D. Taub,et al.  Identification of Defensin-1, Defensin-2, and CAP37/Azurocidin as T-cell Chemoattractant Proteins Released from Interleukin-8-stimulated Neutrophils (*) , 1996, The Journal of Biological Chemistry.

[307]  S. Ludtke,et al.  Membrane thinning caused by magainin 2. , 1995, Biochemistry.

[308]  Domenico Romeo,et al.  Cathelicidins: a novel protein family with a common proregion and a variable C‐terminal antimicrobial domain , 1995, FEBS letters.

[309]  A. Bennick,et al.  Identification of histatins as tannin-binding proteins in human saliva. , 1995, The Biochemical journal.

[310]  S. Ludtke,et al.  X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. , 1995, Biophysical journal.

[311]  A. Otaka,et al.  Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. , 1995, Chemical & pharmaceutical bulletin.

[312]  T. Saito,et al.  A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. , 1995, Journal of biochemistry.

[313]  G M Anantharamaiah,et al.  Molecular basis for prokaryotic specificity of magainin-induced lysis. , 1995, Biochemistry.

[314]  J. Larrick,et al.  Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein , 1995, Infection and immunity.

[315]  M. Saito,et al.  Three conserved glycine residues in valine activation of gramicidin S synthetase 2 from Bacillus brevis. , 1995, Journal of biochemistry.

[316]  Y. Shai,et al.  The alpha-5 segment of Bacillus thuringiensis delta-endotoxin: in vitro activity, ion channel formation and molecular modelling. , 1994, The Biochemical journal.

[317]  M. V. Van Regenmortel,et al.  Antigenic mimicry of natural L-peptides with retro-inverso-peptidomimetics. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[318]  R. Gennaro,et al.  Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes , 1994, FEBS letters.

[319]  K. Sugiyama Anti-lipopolysaccharide activity of histatins, peptides from human saliva , 1993, Experientia.

[320]  M. Nakazato,et al.  Establishment of radioimmunoassay for human neutrophil peptides and their increases in plasma and neutrophil in infection. , 1993, Biochemical and biophysical research communications.

[321]  R. Lehrer,et al.  Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins , 1993, FEBS letters.

[322]  H. G. Boman,et al.  Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine , 1993, Infection and immunity.

[323]  D. Desiderio,et al.  Structure-function studies of amphiphilic antibacterial peptides. , 1993, Journal of medicinal chemistry.

[324]  Douglas E. Jones,et al.  Defensin‐6 mRNA in human Paneth cells: implications for antimicrobia peptides in host defense of the human bowel , 1993, FEBS letters.

[325]  R A Houghten,et al.  Design of model amphipathic peptides having potent antimicrobial activities. , 1992, Biochemistry.

[326]  J. J. Pollock,et al.  Histatins 2 and 4 are autoproteolytic degradation products of human parotid saliva. , 1992, Oral microbiology and immunology.

[327]  M. Zasloff Antibiotic peptides as mediators of innate immunity , 1992, Current Biology.

[328]  Y. Shai,et al.  Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. , 1991, The Journal of biological chemistry.

[329]  P. Engstrom,et al.  Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription , 1991, Infection and immunity.

[330]  C. Bucana,et al.  Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. , 1991, Cancer research.

[331]  N. Fujii,et al.  Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. , 1991, Biochimica et biophysica acta.

[332]  T. Ganz,et al.  Defensins , 1990, European journal of haematology.

[333]  T. Ganz,et al.  Monocyte-chemotactic activity of defensins from human neutrophils. , 1989, The Journal of clinical investigation.

[334]  T. Mohandas,et al.  Assignment of defensin gene(s) to human chromosome 8p23. , 1989, Genomics.

[335]  E. Saitoh,et al.  Tissue Distribution of RNAs for Cystatins, Histatins, Statherin, and Proline-rich Salivary Proteins in Humans and Macaques , 1989, Journal of dental research.

[336]  E. Azen,et al.  Histatins, a family of salivary histidine-rich proteins, are encoded by at least two loci (HIS1 and HIS2). , 1989, Biochemical and biophysical research communications.

[337]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[338]  S. Levitz,et al.  Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. , 1988, The Journal of biological chemistry.

[339]  R I Lehrer,et al.  Direct inactivation of viruses by human granulocyte defensins , 1986, Journal of virology.

[340]  R I Lehrer,et al.  Primary structures of three human neutrophil defensins. , 1985, The Journal of clinical investigation.

[341]  T. Ganz,et al.  DEFENSINS: NATURAL PEPTIDE ANTIBIOTICS IN HUMAN NEUTROPHILS , 1986 .

[342]  S. Matsunaga,et al.  Bioactive marine metabolites, IV. Isolation and the amino acid composition of discodermin A, an antimicrobial peptide, from the marine sponge Discodermia kiiensis. , 1985, Journal of natural products.

[343]  K. Moon,et al.  Complete primary structure of human C4a anaphylatoxin. , 1981, The Journal of biological chemistry.

[344]  D. Hultmark,et al.  Sequence and specificity of two antibacterial proteins involved in insect immunity , 1981, Nature.

[345]  H Lecar,et al.  Electrically gated ionic channels in lipid bilayers , 1977, Quarterly Reviews of Biophysics.

[346]  R. Peters,et al.  Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. , 1976, Biochimica et biophysica acta.

[347]  S. Baudner,et al.  [Human serum proteins with high affinity to carboxymethylcellulose. II. Physico-chemical and immunological characterization of a histidine-rich 3,8S- 2 -glycoportein (CM-protein I)]. , 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[348]  H. Haupt,et al.  [Human serum proteins with high affinity for carboxymethylcellulose. I. Isolation of lysozyme, C1q and 2 hitherto unknown -globulins]. , 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[349]  B. Rasmuson,et al.  Inducible Antibacterial Defence System in Drosophila , 1972, Nature.

[350]  J. Gier,et al.  Chages in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. , 1972, Biochimica et biophysica acta.

[351]  G. de Haas,et al.  Synthetic and structural investigations on 3-phosphatidyl-1'-(3'-O-L-lysyl)glycerol. , 1967, Biochemistry.

[352]  H. I. Zeya,et al.  Cationic Proteins of Polymorphonuclear Leukocyte Lysosomes II. Composition, Properties, and Mechanism of Antibacterial Action , 1966, Journal of bacteriology.

[353]  H. I. Zeya,et al.  Cationic Proteins of Polymorphonuclear Leukocyte Lysosomes I. Resolution of Antibacterial and Enzymatic Activities , 1966, Journal of bacteriology.

[354]  H. I. Zeya,et al.  Antibacterial and Enzymic Basic Proteins from Leukocyte Lysosomes: Separation and Identification , 1963, Science.

[355]  A. Nixon Therapeutic Peptides , 2014, Methods in Molecular Biology.

[356]  L. Hazlett,et al.  Defensins in innate immunity , 2010, Cell and Tissue Research.

[357]  G. Norbert,et al.  Defensin-like antifungal proteins secreted by filamentous fungi , 2010 .

[358]  T. Panavas,et al.  SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. , 2009, Methods in molecular biology.

[359]  R. Epand,et al.  Lipid domains in bacterial membranes and the action of antimicrobial agents. , 2009, Biochimica et biophysica acta.

[360]  A. Cole,et al.  Antimicrobial peptides in innate immune responses. , 2008, Contributions to microbiology.

[361]  Artem Cherkasov,et al.  Short linear cationic antimicrobial peptides: screening, optimizing, and prediction. , 2008, Methods in molecular biology.

[362]  A. Schmidtchen,et al.  An electrochemical study into the interaction between complement-derived peptides and DOPC mono- and bilayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[363]  G. Pabst,et al.  Chapter Five Liposome-Based Biomembrane Mimetic Systems: Implications for Lipid–Peptide Interactions , 2008 .

[364]  R. Litaker,et al.  Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). , 2008, Developmental and comparative immunology.

[365]  W. Driscoll,et al.  alpha-Amidated peptides: approaches for analysis. , 2008, Methods in molecular biology.

[366]  Chun Xing Li,et al.  Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. , 2008, Developmental and comparative immunology.

[367]  A. Schmidtchen,et al.  Composition effect on peptide interaction with lipids and bacteria: variants of C3a peptide CNY21. , 2007, Biophysical journal.

[368]  P. Sautière,et al.  Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. , 2007, Developmental and comparative immunology.

[369]  P. Yu,et al.  Identification of three novel ostricacins: an update on the phylogenetic perspective of beta-defensins. , 2006, International journal of antimicrobial agents.

[370]  V. Nizet Antimicrobial peptide resistance mechanisms of human bacterial pathogens. , 2006, Current issues in molecular biology.

[371]  A. Bayer,et al.  Advances in antimicrobial peptide immunobiology , 2006, Biopolymers.

[372]  R. Hancock,et al.  Immunomodulatory Properties of Defensins and Cathelicidins , 2006, Current topics in microbiology and immunology.

[373]  I. Nagaoka,et al.  Human defensins and cathelicidins in the skin: beyond direct antimicrobial properties. , 2006, Critical reviews in immunology.

[374]  M. Otto,et al.  Bacterial evasion of antimicrobial peptides by biofilm formation. , 2006, Current topics in microbiology and immunology.

[375]  D. Scheidegger,et al.  Peptide drugs, overcoming the challenges, a growing business , 2006 .

[376]  M. Verlander,et al.  Are low-priced peptides affordable? , 2006 .

[377]  W. Shafer Antimicrobial peptides and human disease , 2006 .

[378]  M. Yeaman,et al.  Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. , 2005, Protein and peptide letters.

[379]  D. Phoenix,et al.  Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. , 2005, Protein and peptide letters.

[380]  D. Phoenix,et al.  Are oblique orientated alpha-helices used by antimicrobial peptides for membrane invasion? , 2005, Protein and peptide letters.

[381]  M. A. Rothschild,et al.  Serum albumin , 2005, The American Journal of Digestive Diseases.

[382]  H. Vogel,et al.  Lactoferricin , 2005, Cellular and Molecular Life Sciences.

[383]  D. Phoenix,et al.  Are Oblique Orientated α-Helices Used by Antimicrobial Peptides for Membrane Invasion? , 2005 .

[384]  D. Phoenix,et al.  Amphiphilic α-Helical Antimicrobial Peptides and Their Structure / Function Relationships , 2005 .

[385]  Naoshi Ohta,et al.  Biology of lysenin, a protein in the coelomic fluid of the earthworm Eisenia foetida. , 2004, International review of cytology.

[386]  M. Sansom Alamethicin and related peptaibols — model ion channels , 2004, European Biophysics Journal.

[387]  P. F. Almeida,et al.  Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. , 2004, Biochemistry.

[388]  Zhe Wang,et al.  APD: the Antimicrobial Peptide Database , 2004, Nucleic Acids Res..

[389]  Robert Bals,et al.  Antimicrobial Peptides , 2012, Drugs.

[390]  Y. Lim,et al.  Alpha-defensin 1 (human neutrophil protein 1) as an antichemotactic agent for human polymorphonuclear leukocytes. , 2003, Antimicrobial agents and chemotherapy.

[391]  A. McDermott,et al.  Expression of human beta-defensins in conjunctival epithelium: relevance to dry eye disease. , 2003, Investigative ophthalmology & visual science.

[392]  A. Schmidtchen,et al.  Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. , 2003, Microbial pathogenesis.

[393]  B. Thomma,et al.  Plant defensins , 2002, Planta.

[394]  Robert E W Hancock,et al.  Role of membranes in the activities of antimicrobial cationic peptides. , 2002, FEMS microbiology letters.

[395]  P. Nibbering,et al.  Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. , 2002, Immunology.

[396]  Y. Shai,et al.  Mode of action of membrane active antimicrobial peptides. , 2002, Biopolymers.

[397]  M. Heinzelmann,et al.  Heparin binding protein (CAP37) differentially modulates endotoxin-induced cytokine production. , 2001, International journal of surgical investigation.

[398]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[399]  I. Nagaoka,et al.  Cathelicidin Family of Antibacterial Peptides , 2001 .

[400]  Alessandro Tossi,et al.  Amphipathic, α‐helical antimicrobial peptides , 2000 .

[401]  R. Hancock,et al.  Cationic antimicrobial peptides and their multifunctional role in the immune system. , 2000, Critical reviews in immunology.

[402]  M. Selsted,et al.  Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. , 2000, Nature immunology.

[403]  A. Griffioen,et al.  Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. , 2000, Blood.

[404]  J. Fiddes,et al.  Development of protegrins for the treatment and prevention of oral mucositis: structure-activity relationships of synthetic protegrin analogues. , 2000, Biopolymers.

[405]  K. Matsuzaki,et al.  Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. , 2000, Biophysical journal.

[406]  A. Hughes,et al.  Evolutionary diversification of the mammalian defensins , 1999, Cellular and Molecular Life Sciences CMLS.

[407]  R. Sato,et al.  Acaloleptins A: inducible antibacterial peptides from larvae of the beetle, Acalolepta luxuriosa. , 1999, Archives of insect biochemistry and physiology.

[408]  A. Rao,et al.  Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds. , 1999, Archives of biochemistry and biophysics.

[409]  Gupta,et al.  The concentration-dependent membrane activity of cecropin A , 1999, Biochemistry.

[410]  E. Greenberg,et al.  Production of beta-defensins by human airway epithelia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[411]  L. Bobek,et al.  Human salivary histatins: promising anti-fungal therapeutic agents. , 1998, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[412]  R. Hodges,et al.  Influence of preformed alpha-helix and alpha-helix induction on the activity of cationic antimicrobial peptides. , 1998, The journal of peptide research : official journal of the American Peptide Society.

[413]  H. Heng,et al.  The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. , 1997, Genomics.

[414]  S. Bishop,et al.  De novo antimicrobial peptides with low mammalian cell toxicity. , 1996, Journal of medicinal chemistry.

[415]  R. Houghten,et al.  Generation and use of nonsupport-bound peptide and peptidomimetic combinatorial libraries. , 1996, Methods in enzymology.

[416]  S. Pillai,et al.  Innate immunity. , 1996, Current opinion in immunology.

[417]  H. G. Boman,et al.  Peptide antibiotics and their role in innate immunity. , 1995, Annual review of immunology.

[418]  R I Lehrer,et al.  Defensins: antimicrobial and cytotoxic peptides of mammalian cells. , 1993, Annual review of immunology.

[419]  S. Shizukuishi,et al.  Inhibitory effects of synthetic histidine-rich peptides on haemagglutination by Bacteroides gingivalis 381. , 1990, Archives of oral biology.

[420]  P. Elsbach Antibiotics from within: antibacterials from human and animal sources. , 1990, Trends in biotechnology.

[421]  T. Hugli Structure and function of C3a anaphylatoxin. , 1990, Current topics in microbiology and immunology.

[422]  Giorgio Piccaluga,et al.  X-ray diffraction study of a , 1977 .

[423]  H. Haupt,et al.  Humanserumproteine mit hoher Affinität zu Carboxymethylcellulose, I, Isolierung von Lysozym, C1q und zwei bisher unbekannten α-Globulinen , 1972 .