Atomistic Models and Force Fields

[1]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[2]  Martin Karplus,et al.  New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: Elimination of singularities , 1996 .

[3]  P. Kollman,et al.  A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. , 1999, Journal of biomolecular structure & dynamics.

[4]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[5]  Jenn-Huei Lii,et al.  Directional hydrogen bonding in the MM3 force field: II , 1998, Journal of Computational Chemistry.

[6]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[7]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[8]  William L. Jorgensen,et al.  Free Energies of Hydration and Pure Liquid Properties of Hydrocarbons from the OPLS All-Atom Model , 1994 .

[9]  F. Momany,et al.  Validation of the general purpose QUANTA ®3.2/CHARMm® force field , 1992 .

[10]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[11]  M. Karplus,et al.  Simulation of activation free energies in molecular systems , 1996 .

[12]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[13]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[14]  Jacopo Tomasi,et al.  Geometry optimization of molecular structures in solution by the polarizable continuum model , 1998 .

[15]  Richard Lavery,et al.  Internal coordinate modeling of DNA: Force field comparisons , 1997, J. Comput. Chem..

[16]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[17]  Arnold T. Hagler,et al.  Application of sensitivity analysis to the establishment of intermolecular potential functions , 1991 .

[18]  Benny G. Johnson,et al.  Comparison and Scaling of Hartree-Fock and Density Functional Harmonic Force Fields. 1. Formamide Monomer , 1994 .

[19]  Alexander D. MacKerell,et al.  Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. , 1997, Biophysical journal.

[20]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[21]  Polarization Effects in the AgBr Interaction Potential , 1995 .

[22]  Jon Baker,et al.  Direct Scaling of Primitive Valence Force Constants: An Alternative Approach to Scaled Quantum Mechanical Force Fields , 1998 .

[23]  Mark R. Wilson,et al.  Replicated data and domain decomposition molecular dynamics techniques for simulation of anisotropic potentials , 1997 .

[24]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[25]  D. Eisenberg,et al.  Atomic solvation parameters applied to molecular dynamics of proteins in solution , 1992, Protein science : a publication of the Protein Society.

[26]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[27]  M. Karplus,et al.  On the Treatment of Electrostatic Interactions in Biomolecular Simulations , 1991 .

[28]  Martin Karplus,et al.  Ab initio studies of hydrogen bonding of N-methylacetamide: structure, cooperativity, and internal rotational barriers , 1992 .

[29]  A. Liwo,et al.  A united‐residue force field for off‐lattice protein‐structure simulations. I. Functional forms and parameters of long‐range side‐chain interaction potentials from protein crystal data , 1997 .

[30]  J. Andrew McCammon,et al.  Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation , 1993 .

[31]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[32]  F. Allen,et al.  The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information , 1979 .

[33]  Ronald M. Levy,et al.  SOLVATION FREE ENERGIES OF SMALL AMIDES AND AMINES FROM MOLECULAR DYNAMICS/FREE ENERGY PERTURBATION SIMULATIONS USING PAIRWISE ADDITIVE AND MANY-BODY POLARIZABLE POTENTIALS , 1995 .

[34]  Bruce J. Berne,et al.  Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides , 1996 .

[35]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[36]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[37]  M. Karplus,et al.  A Comprehensive Analytical Treatment of Continuum Electrostatics , 1996 .

[38]  L A Mirny,et al.  How to derive a protein folding potential? A new approach to an old problem. , 1996, Journal of molecular biology.

[39]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[40]  A. Hagler,et al.  Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  William L. Jorgensen,et al.  OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform , 1991 .

[42]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[43]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[44]  Benoît Roux,et al.  Potential energy function for cation–peptide interactions: An ab initio study , 1995, J. Comput. Chem..

[45]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[46]  Martin Karplus,et al.  Empirical force field study of geometries and conformational transitions of some organic molecules , 1992 .

[47]  M Feig,et al.  Structural equilibrium of DNA represented with different force fields. , 1998, Biophysical journal.

[48]  A. Warshel,et al.  Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes , 1970 .

[49]  Peter A. Kollman,et al.  Application of the RESP Methodology in the Parametrization of Organic Solvents , 1998 .

[50]  S. Lifson,et al.  Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C:O.cntdot..cntdot..cntdot.H- hydrogen bonds , 1979 .

[51]  Kazutoshi Tanabe,et al.  Refinement of Nonbonding Interaction Potential Parameters for Methane on the Basis of the Pair Potential Obtained by MP3/6-311G(3d,3p)-Level ab Initio Molecular Orbital Calculations: The Anisotropy of H/H Interaction , 1994 .

[52]  J Novotny,et al.  Empirical free energy calculations: a blind test and further improvements to the method. , 1997, Journal of molecular biology.

[53]  Alexander D. MacKerell,et al.  Importance of attractive van der Waals contribution in empirical energy function models for the heat of vaporization of polar liquids , 1991 .

[54]  Jiali Gao,et al.  Optimization of the Lennard‐Jones parameters for a combined ab initio quantum mechanical and molecular mechanical potential using the 3‐21G basis set , 1996 .

[55]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[56]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[57]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[58]  Alexander D. MacKerell,et al.  Progress toward chemical accuracy in the computer simulation of condensed phase reactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  P. Kollman,et al.  Molecular Dynamics and Free Energy Perturbation Study of Spherand Complexation with Metal Ions Employing Additive and Nonadditive Force Fields , 1995 .

[60]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[61]  William L. Jorgensen,et al.  Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene , 1990 .

[62]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[63]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[64]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[65]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[66]  W. C. Still,et al.  The GB/SA Continuum Model for Solvation. A Fast Analytical Method for the Calculation of Approximate Born Radii , 1997 .

[67]  G. Karlström,et al.  Polarizable Ions in Polarizable Water: A Molecular Dynamics Study , 1997 .

[68]  Jenn-Huei Lii,et al.  The MM3 force field for amides, polypeptides and proteins , 1991 .

[69]  Alexander D. MacKerell,et al.  Ab Initio Calculations on the Use of Helium and Neon as Probes of the van der Waals Surfaces of Molecules , 1996 .

[70]  Jiali Gao,et al.  Simulation of Liquid Amides Using a Polarizable Intermolecular Potential Function , 1996 .

[71]  Darrin M. York,et al.  QUANTUM MECHANICAL STUDY OF AQUEOUS POLARIZATION EFFECTS ON BIOLOGICAL MACROMOLECULES , 1996 .

[72]  Richard A. Friesner,et al.  Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields , 1997 .

[73]  Ming-Jing Hwang,et al.  Derivation of class II force fields: V. Quantum force field for amides, peptides, and related compounds , 1998, J. Comput. Chem..

[74]  D. Beglov,et al.  Atomic Radii for Continuum Electrostatics Calculations Based on Molecular Dynamics Free Energy Simulations , 1997 .

[75]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[76]  Alexander D. MacKerell,et al.  Conformational Properties of the Deoxyribose and Ribose Moieties of Nucleic Acids: A Quantum Mechanical Study , 1998 .

[77]  M. Marchi,et al.  SIMULATION OF A PROTEIN CRYSTAL AT CONSTANT PRESSURE , 1997 .

[78]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[79]  H. Scheraga,et al.  Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides , 1994 .

[80]  Bhyravabhotla Jayaram,et al.  Solvation Free Energy of Biomacromolecules: Parameters for a Modified Generalized Born Model Consistent with the AMBER Force Field , 1998 .

[81]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .