Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis.

DNA primases are template-dependent RNA polymerases that synthesize oligoribonucleotide primers that can be extended by DNA polymerase. The bacterial primases consist of zinc binding and RNA polymerase domains that polymerize ribonucleotides at templating sequences of single-stranded DNA. We report a crystal structure of bacteriophage T7 primase that reveals its two domains and the presence of two Mg(2+) ions bound to the active site. NMR and biochemical data show that the two domains remain separated until the primase binds to DNA and nucleotide. The zinc binding domain alone can stimulate primer extension by T7 DNA polymerase. These findings suggest that the zinc binding domain couples primer synthesis with primer utilization by securing the DNA template in the primase active site and then delivering the primed DNA template to DNA polymerase. The modular architecture of the primase and a similar mechanism of priming DNA synthesis are likely to apply broadly to prokaryotic primases.

[1]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[2]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[3]  C. Richardson,et al.  Requirements for primer synthesis by bacteriophage T7 63-kDa gene 4 protein. Roles of template sequence and T7 56-kDa gene 4 protein. , 1991, The Journal of biological chemistry.

[4]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[5]  K. Marians,et al.  Identification of a Region of Escherichia coli DnaB Required for Functional Interaction with DnaG at the Replication Fork* , 2000, The Journal of Biological Chemistry.

[6]  A. Mondragón,et al.  The structure of Escherichia coli DNA topoisomerase III. , 1999, Structure.

[7]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[8]  E. Lanka,et al.  Domain structure of phage P4 alpha protein deduced by mutational analysis , 1995, Journal of bacteriology.

[9]  E. Koonin,et al.  Organization and evolution of bacterial and bacteriophage primase-helicase systems , 1992, Journal of Molecular Evolution.

[10]  J. Berger,et al.  Primus inter pares (First among equals) , 2001, Nature Structural Biology.

[11]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[12]  T. Kusakabe,et al.  The Role of the Zinc Motif in Sequence Recognition by DNA Primases* , 1996, The Journal of Biological Chemistry.

[13]  G. Godson,et al.  Studies of the Functional Topography of the Catalytic Center of Escherichia coli Primase (*) , 1995, The Journal of Biological Chemistry.

[14]  L. Powers,et al.  Escherichia coli primase zinc is sensitive to substrate and cofactor binding. , 1999, Biochemistry.

[15]  Charles C. Richardson,et al.  Crystal Structure of the Helicase Domain from the Replicative Helicase-Primase of Bacteriophage T7 , 1999, Cell.

[16]  J. Berger,et al.  Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11 , 1999, The EMBO journal.

[17]  E. Egelman,et al.  The primase active site is on the outside of the hexameric bacteriophage T7 gene 4 helicase-primase ring. , 2001, Journal of molecular biology.

[18]  Christine A. Orengo,et al.  Protein Structure Comparison , 2002 .

[19]  T. Pawson,et al.  Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. , 1994, Biochemistry.

[20]  J. Kuriyan,et al.  A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. , 2000, Journal of molecular biology.

[21]  R F Standaert,et al.  Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. , 1993, Journal of molecular biology.

[22]  T. Kusakabe,et al.  Roles of the helicase and primase domain of the gene 4 protein of bacteriophage T7 in accessing the primase recognition site , 1998, The EMBO journal.

[23]  S. Benkovic,et al.  A zinc ribbon protein in DNA replication: primer synthesis and macromolecular interactions by the bacteriophage T4 primase. , 2001, Biochemistry.

[24]  Y. Kohara,et al.  Initiation sites for discontinuous DNA synthesis of bacteriophage T7. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Richardson,et al.  Interaction of Bacteriophage T7 Gene 4 Primase with Its Template Recognition Site* , 1999, The Journal of Biological Chemistry.

[26]  J. Berger,et al.  Structure of the RNA polymerase domain of E. coli primase. , 2000, Science.

[27]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[28]  Masato Kato,et al.  A Complex of the Bacteriophage T7 Primase-Helicase and DNA Polymerase Directs Primer Utilization* , 2001, The Journal of Biological Chemistry.

[29]  C. Richardson Bacteriophage T7: Minimal requirements for the replication of a duplex DNA molecule , 1983, Cell.

[30]  L. Bird,et al.  Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus. , 2000, Biochemistry.

[31]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[32]  S. Weller,et al.  A tale of two HSV-1 helicases: roles of phage and animal virus helicases in DNA replication and recombination. , 2001, Progress in nucleic acid research and molecular biology.

[33]  Alfonso Mondragón,et al.  Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I , 1994, Nature.

[34]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[35]  F. Studier,et al.  Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. , 1983, Journal of molecular biology.

[36]  S. Benkovic,et al.  Replisome-mediated DNA replication. , 2001, Annual review of biochemistry.

[37]  E. Egelman,et al.  Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. Godson,et al.  A Mutant Escherichia coli Primase Defective in Elongation of Primer RNA Chains , 1999, Journal of bacteriology.

[39]  S. Doublié,et al.  The mechanism of action of T7 DNA polymerase. , 1998, Current opinion in structural biology.

[40]  C. Richardson,et al.  Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[42]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[43]  J. Bernstein,et al.  A 7-kDa region of the bacteriophage T7 gene 4 protein is required for primase but not for helicase activity. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Griffith,et al.  Coordinated leading and lagging strand DNA synthesis on a minicircular template. , 1998, Molecular cell.

[45]  M. Weiss,et al.  Structure of a new nucleic-acid-binding motif in eukaryotic transcriptional elongation factor TFIIS , 1993, Nature.

[46]  T. Kusakabe,et al.  Gene 4 DNA Primase of Bacteriophage T7 Mediates the Annealing and Extension of Ribo-oligonucleotides at Primase Recognition Sites* , 1997, The Journal of Biological Chemistry.

[47]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[48]  C. Richardson,et al.  Interaction of adjacent primase domains within the hexameric gene 4 helicase-primase of bacteriophage T7 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Michael R Sawaya,et al.  Crystal Structure of T7 Gene 4 Ring Helicase Indicates a Mechanism for Sequential Hydrolysis of Nucleotides , 2000, Cell.

[50]  F. Studier,et al.  Large scale purification and biochemical characterization of T7 primase/helicase proteins. Evidence for homodimer and heterodimer formation. , 1992, The Journal of biological chemistry.

[51]  F. Studier,et al.  Selection, Identification, and Genetic Analysis of Random Mutants in the Cloned Primase/Helicase Gene of Bacteriophage T7* , 1996, The Journal of Biological Chemistry.

[52]  D. Wigley,et al.  Structure of the zinc-binding domain of Bacillus stearothermophilus DNA primase. , 2000, Structure.

[53]  C. Richardson,et al.  The gene 4 protein of bacteriophage T7. Characterization of helicase activity. , 1983, The Journal of biological chemistry.

[54]  K. Baradaran,et al.  An N-terminal fragment of the gene 4 helicase/primase of bacteriophage T7 retains primase activity in the absence of helicase activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  C. Richardson,et al.  A unique loop in the DNA-binding crevice of bacteriophage T7 DNA polymerase influences primer utilization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Hu Pan,et al.  Characterization and crystallization of the helicase domain of bacteriophage T7 gene 4 protein , 1997, Nucleic Acids Res..

[57]  Detlef D. Leipe,et al.  Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. , 1998, Nucleic acids research.

[58]  S. Lee,et al.  Essential Lysine Residues in the RNA Polymerase Domain of the Gene 4 Primase-Helicase of Bacteriophage T7* , 2001, The Journal of Biological Chemistry.

[59]  M. Griep Primase structure and function. , 1995, Indian journal of biochemistry & biophysics.

[60]  C. Richardson,et al.  Requirement for a zinc motif for template recognition by the bacteriophage T7 primase. , 1994, The EMBO journal.

[61]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[62]  Z. Kelman,et al.  Trading Places on DNA—A Three-Point Switch Underlies Primer Handoff from Primase to the Replicative DNA Polymerase , 1999, Cell.

[63]  C. Richardson,et al.  The Linker Region between the Helicase and Primase Domains of the Bacteriophage T7 Gene 4 Protein Is Critical for Hexamer Formation* , 1999, The Journal of Biological Chemistry.

[64]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[65]  P. V. von Hippel,et al.  Bit Players in the Trombone Orchestra , 2000, Science.

[66]  J. Berger,et al.  Structure and mechanism of DNA topoisomerase II , 1996, Nature.

[67]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[68]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[69]  Robert Huber,et al.  Crystal structure of a DNA-dependent RNA polymerase (DNA primase) , 2001, Nature Structural Biology.

[70]  T. Steitz,et al.  Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. , 1998, Current opinion in structural biology.

[71]  K D Cowtan,et al.  Phase combination and cross validation in iterated density-modification calculations. , 1996, Acta crystallographica. Section D, Biological crystallography.

[72]  S. Hyberts,et al.  The Cys4 zinc finger of bacteriophage T7 primase in sequence-specific single-stranded DNA recognition. , 1999, Proceedings of the National Academy of Sciences of the United States of America.