Self-referenced quantitative phase microscopy

Self-referenced quantitative phase microscopy (SrQPM) is reported, wherein quantitative phase imaging is achieved through the interference of the sample wave with a reflected version of itself. The off-axis interference between the two beams generates a spatially modulated hologram that is analyzed to quantify the sample's amplitude and phase profile. SrQPM requires approximately one-half of the object field of view to be empty and optically flat, which serves as a reference for the other half of the field of view containing the sample.

[1]  K. Nugent,et al.  Partially coherent fields, the transport-of-intensity equation, and phase uniqueness , 1995 .

[2]  R. Dasari,et al.  Ultrasensitive Chemical Analysis by Raman Spectroscopy , 1999 .

[3]  Jong Chul Ye,et al.  Self-reference quantitative phase microscopy for microfluidic devices. , 2010, Optics letters.

[4]  Gabriel Popescu,et al.  Quantitative phase imaging of live cells using fast Fourier phase microscopy. , 2007, Applied optics.

[5]  D Zicha,et al.  Dynamics of fibroblast spreading. , 1995, Journal of cell science.

[6]  G. B. David,et al.  The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. , 1969, Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik.

[7]  Gabriel Popescu,et al.  Coherence properties of red blood cell membrane motions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Gabriel Popescu,et al.  Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. , 2005, Journal of biomedical optics.

[9]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[10]  Gabriel Popescu,et al.  Measurement of red blood cell mechanics during morphological changes , 2010, Proceedings of the National Academy of Sciences.

[11]  Gabriel Popescu,et al.  Diffraction phase and fluorescence microscopy. , 2006, Optics express.

[12]  Chun-Min Lo,et al.  High-resolution quantitative phase-contrast microscopy by digital holography. , 2005, Optics express.

[13]  Joseph A. Izatt,et al.  Spectral domain phase microscopy , 2004 .

[14]  Jürgen Popp,et al.  Raman spectroscopy--a prospective tool in the life sciences. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  Thomas E. Milner,et al.  Phase-sensitive frequency-multiplexed optical low-coherence reflectometery , 2001 .

[16]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[17]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[18]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[19]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[20]  D Zicha,et al.  Rapid, microtubule-dependent fluctuations of the cell margin. , 1997, Journal of cell science.

[21]  V. Ntziachristos Fluorescence molecular imaging. , 2006, Annual review of biomedical engineering.

[22]  H. Rylander Iii,et al.  Detection of neural activity using phase-sensitive optical low-coherence reflectometry. , 2004, Optics express.

[23]  H. Seung,et al.  Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. , 2004, Optics letters.

[24]  E. Cuche,et al.  Digital holography for quantitative phase-contrast imaging. , 1999, Optics letters.

[25]  Nir S. Gov,et al.  Metabolic remodeling of the human red blood cell membrane , 2010, Proceedings of the National Academy of Sciences.

[26]  K. Nugent,et al.  Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials , 1995 .

[27]  J. W. Goodman,et al.  Digital Image Formation From Electronically Detected Holograms , 1967, Other Conferences.

[28]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[29]  Daniel Carl,et al.  Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. , 2004, Applied optics.

[30]  I. Yamaguchi,et al.  Phase-shifting digital holography. , 1997, Optics letters.