Modeling and simulation of sector-coupled networks: A gas-power benchmark

In this contribution, we aim at presenting a gas-to-power benchmark problem that can be used for the simulation of electricity and gas networks in a time-dependent environment. Based on realistic data from the IEEE database and the GasLib suite, we describe the full set up of the underlying equations and motivate the choice of parameters. The simulation results demonstrate the applicability of the proposed approach and also allow for a clear visualization of gas-power conversion.

[1]  Dick Duffey,et al.  Power Generation , 1932, Transactions of the American Institute of Electrical Engineers.

[2]  Philip G. Hill,et al.  Power generation , 1927, Journal of the A.I.E.E..

[3]  Hadi Saadat,et al.  Power System Analysis , 1998 .

[4]  B. H. Kim,et al.  A comparison of distributed optimal power flow algorithms , 2000 .

[5]  Axel Klar,et al.  Coupling conditions for gas networks governed by the isothermal Euler equations , 2006, Networks Heterog. Media.

[6]  K. Strunz Developing benchmark models for studying the integration of distributed energy resources , 2006, 2006 IEEE Power Engineering Society General Meeting.

[7]  Axel Klar,et al.  Gas flow in pipeline networks , 2006, Networks Heterog. Media.

[8]  Mauro Garavello,et al.  On the Cauchy Problem for the p-System at a Junction , 2008, SIAM J. Math. Anal..

[9]  Jens Lang,et al.  An implicit box scheme for subsonic compressible flow with dissipative source term , 2010, Numerical Algorithms.

[10]  Michael Herty,et al.  Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks , 2011, Multiscale Model. Simul..

[11]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[12]  Dimosthenis Trimis,et al.  Potenzial der thermisch integrierten Hochtemperaturelektrolyse und Methanisierung für die Energiespeicherung durch Power-to-Gas (PtG) , 2014 .

[13]  Michael Chertkov,et al.  Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty , 2012, SIAM Rev..

[14]  Gunhild Allard Reigstad,et al.  Numerical network models and entropy principles for isothermal junction flow , 2014, Networks Heterog. Media.

[15]  Michael Chertkov,et al.  Cascading of Fluctuations in Interdependent Energy Infrastructures: Gas-Grid Coupling , 2014, ArXiv.

[16]  Steven H. Low,et al.  Convex Relaxation of Optimal Power Flow—Part II: Exactness , 2014, IEEE Transactions on Control of Network Systems.

[17]  Steven H. Low,et al.  Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence , 2014, IEEE Transactions on Control of Network Systems.

[18]  Zhe Chen,et al.  Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion , 2016 .

[19]  Michael Chertkov,et al.  Control policies for operational coordination of electric power and natural gas transmission systems , 2016, 2016 American Control Conference (ACC).

[20]  Steffen Rebennack,et al.  An introduction to optimal power flow: Theory, formulation, and examples , 2016 .

[21]  Florin Capitanescu,et al.  Critical review of recent advances and further developments needed in AC optimal power flow , 2016 .

[22]  Günter Cerbe,et al.  Grundlagen der Gastechnik: Gasbeschaffung – Gasverteilung – Gasverwendung , 2016 .

[23]  Sebastian Sager,et al.  Structure Analysis of the German Transmission Network Using the Open Source Model SciGRID , 2017 .

[24]  Michael Chertkov,et al.  Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures , 2017, IEEE Transactions on Power Systems.

[25]  Henrik Sandberg,et al.  A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems , 2017, IEEE Transactions on Smart Grid.

[26]  Thorsten Koch,et al.  GasLib - A Library of Gas Network Instances , 2017, Data.

[27]  Veit Hagenmeyer,et al.  Optimal power flow: an introduction to predictive, distributed and stochastic control challenges , 2018, Autom..

[28]  Oliver Kolb,et al.  Modeling and simulation of gas networks coupled to power grids , 2018 .

[29]  T. Brown,et al.  Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system , 2018, Energy.

[30]  Oliver Kolb,et al.  Optimal control of compressor stations in a coupled gas-to-power network , 2018 .

[31]  Michael Herty,et al.  Coupling of Compressible Euler Equations , 2019, Vietnam Journal of Mathematics.

[32]  Veit Hagenmeyer,et al.  Chance-Constrained AC Optimal Power Flow: A Polynomial Chaos Approach , 2019, IEEE Transactions on Power Systems.

[33]  Yuning Jiang,et al.  Toward Distributed OPF Using ALADIN , 2018, IEEE Transactions on Power Systems.

[34]  Gabriela Hug,et al.  Natural gas system dispatch accounting for electricity side flexibility , 2020 .