ECO-HC Based Tracking for Ground Moving Target Using Single UAV

To overcome the problems of target missing and serious target occlusion in ground target tracking with UAV, this paper introduces the tracking confidence and detect module on the basis of ECO-HC. We use the Peak to Sidelobe Ratio(PSR) to express the track confidence. The YOLOv3 is taken as the detect module, the position and feature of detecting results are used to match with the target. The algorithm descreases the frequence of calling YOLOv3 by PSR, and reduces the influence of YOLOv3 to real-time through the way of offline training to enhance the speed. At the same time the accuracy of detecting is guranteed with the target relevance matching. The results show the algorithm can find the target-lost back and has obvious improvement in tracking accuracy.

[1]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Bernard Ghanem,et al.  A Benchmark and Simulator for UAV Tracking , 2016, ECCV.

[4]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[6]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[7]  Р Ю Чуйков,et al.  Обнаружение транспортных средств на изображениях загородных шоссе на основе метода Single shot multibox Detector , 2017 .

[8]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Ming-Hsuan Yang,et al.  Learning Spatial-Aware Regressions for Visual Tracking , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[11]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[14]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.