Interactive faceted query suggestion for exploratory search: Whole‐session effectiveness and interaction engagement

The outcome of exploratory information retrieval is not only dependent on the effectiveness of individual responses to a set of queries, but also on relevant information retrieved during the entire exploratory search session. We study the effect of search assistance, operationalized as an interactive faceted query suggestion, for both whole‐session effectiveness and engagement through interactive faceted query suggestion. A user experiment is reported, where users performed exploratory search tasks, comparing interactive faceted query suggestion and a control condition with only conventional typed‐query interaction. Data comprised of interaction and search logs show that the availability of interactive faceted query suggestion substantially improves whole‐session effectiveness by increasing recall without sacrificing precision. The increased engagement with interactive faceted query suggestion is targeted to direct situated navigation around the initial query scope, but is not found to improve individual queries on average. The results imply that research in exploratory search should focus on measuring and designing tools that engage users with directed situated navigation support for improving whole‐session performance.

[1]  Robert G. Capra,et al.  Differences in the Use of Search Assistance for Tasks of Varying Complexity , 2015, SIGIR.

[2]  John Stasko,et al.  Jigsaw: supporting investigative analysis through interactive visualization , 2008 .

[3]  Grace Hui Yang,et al.  Utilizing query change for session search , 2013, SIGIR.

[4]  Hongbo Deng,et al.  A two-dimensional click model for query auto-completion , 2014, SIGIR.

[5]  Craig MacDonald,et al.  Intent models for contextualising and diversifying query suggestions , 2013, CIKM.

[6]  Ryen W. White,et al.  Struggling or exploring?: disambiguating long search sessions , 2014, WSDM.

[7]  Rosie Jones,et al.  Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs , 2008, CIKM '08.

[8]  Ricardo A. Baeza-Yates,et al.  Query Recommendation Using Query Logs in Search Engines , 2004, EDBT Workshops.

[9]  Jaana Kekäläinen,et al.  Binary and graded relevance in IR evaluations--Comparison of the effects on ranking of IR systems , 2005, Inf. Process. Manag..

[10]  Nicholas J. Belkin,et al.  Exploring and predicting search task difficulty , 2012, CIKM '12.

[11]  Lu Wang,et al.  Clustering query refinements by user intent , 2010, WWW '10.

[12]  Loren G. Terveen,et al.  Constructing, organizing, and visualizing collections of topically related Web resources , 1999, TCHI.

[13]  Arjen P. de Vries,et al.  Characterizing stages of a multi-session complex search task through direct and indirect query modifications , 2013, SIGIR.

[14]  Lois M. L. Delcambre,et al.  Discounted Cumulated Gain Based Evaluation of Multiple-Query IR Sessions , 2008, ECIR.

[15]  Kevin Li,et al.  Faceted metadata for image search and browsing , 2003, CHI '03.

[16]  Ben Carterette,et al.  Overview of the TREC 2011 Session Track , 2011, TREC.

[17]  Efthimis N. Efthimiadis,et al.  Analyzing and evaluating query reformulation strategies in web search logs , 2009, CIKM.

[18]  Daqing He,et al.  Searching, browsing, and clicking in a search session: changes in user behavior by task and over time , 2014, SIGIR.

[19]  Diogo Cabral,et al.  Designing for Exploratory Search on Touch Devices , 2015, CHI.

[20]  KaskiSamuel,et al.  Interactive intent modeling , 2014 .

[21]  Yi Zhang,et al.  Personalized interactive faceted search , 2008, WWW.

[22]  Tovi Grossman,et al.  Citeology: visualizing paper genealogy , 2012, CHI EA '12.

[23]  John T. Stasko,et al.  Jigsaw: Supporting Investigative Analysis through Interactive Visualization , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[24]  James Allan,et al.  Task-aware query recommendation , 2013, SIGIR.

[25]  Ryen W. White,et al.  Assessing the scenic route: measuring the value of search trails in web logs , 2010, SIGIR.

[26]  Enhong Chen,et al.  Context-aware query classification , 2009, SIGIR.

[27]  Ben Shneiderman,et al.  Visual information seeking: tight coupling of dynamic query filters with starfield displays , 1994, CHI '94.

[28]  Marti A. Hearst TileBars: visualization of term distribution information in full text information access , 1995, CHI '95.

[29]  Tuukka Ruotsalo,et al.  Understanding user behavior in naturalistic information search tasks , 2019, J. Assoc. Inf. Sci. Technol..

[30]  Nicholas J. Belkin,et al.  Examining the effects of task topic familiarity on searchers' behaviors in different task types , 2013, ASIST.

[31]  Peter Auer,et al.  Using Confidence Bounds for Exploitation-Exploration Trade-offs , 2003, J. Mach. Learn. Res..

[32]  CHENGXIANG ZHAI,et al.  A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.

[33]  Pertti Vakkari,et al.  Search effort degrades search output but improves task outcome , 2012, J. Assoc. Inf. Sci. Technol..

[34]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[35]  Ziv Bar-Yossef,et al.  Context-sensitive query auto-completion , 2011, WWW.

[36]  Eugene Agichtein,et al.  To hint or not: exploring the effectiveness of search hints for complex informational tasks , 2014, SIGIR.

[37]  Pernilla Qvarfordt,et al.  Looking ahead: query preview in exploratory search , 2013, SIGIR.

[38]  Jacek Gwizdka,et al.  Search behaviors in different task types , 2010, JCDL '10.

[39]  Pu-Jen Cheng,et al.  Learning user reformulation behavior for query auto-completion , 2014, SIGIR.

[40]  Dorota Glowacka,et al.  Interactive Intent Modeling for Exploratory Search , 2018, ACM Trans. Inf. Syst..

[41]  Milad Shokouhi,et al.  Learning to personalize query auto-completion , 2013, SIGIR.

[42]  M. de Rijke,et al.  A Survey of Query Auto Completion in Information Retrieval , 2016, Found. Trends Inf. Retr..

[43]  Yuchen Zhang,et al.  Characterizing search intent diversity into click models , 2011, WWW.

[44]  Grace Hui Yang,et al.  Win-win search: dual-agent stochastic game in session search , 2014, SIGIR.

[45]  Tie-Yan Liu,et al.  Actively predicting diverse search intent from user browsing behaviors , 2010, WWW '10.

[46]  Kalervo Järvelin,et al.  Task Complexity Affects Information Seeking and Use , 1995, Inf. Process. Manag..

[47]  Stephen J. Payne,et al.  Knowledge in the head and on the web: using topic expertise to aid search , 2008, CHI.

[48]  Paul N. Bennett,et al.  Understanding Intrinsic Diversity in Web Search: Improving Whole-Session Relevance , 2014, TOIS.

[49]  Tuukka Ruotsalo,et al.  Why do Users Issue Good Queries?: Neural Correlates of Term Specificity , 2019, SIGIR.

[50]  Dan E. Albertson Visual information seeking , 2015, J. Assoc. Inf. Sci. Technol..

[51]  Aristides Gionis,et al.  The query-flow graph: model and applications , 2008, CIKM '08.

[52]  Jingjing Liu,et al.  Personalizing information retrieval for multi‐session tasks: Examining the roles of task stage, task type, and topic knowledge on the interpretation of dwell time as an indicator of document usefulness , 2015, J. Assoc. Inf. Sci. Technol..

[53]  Ben Carterette,et al.  Evaluating Retrieval over Sessions: The TREC Session Track 2011-2014 , 2016, SIGIR.

[54]  Dorota Glowacka,et al.  Directing exploratory search with interactive intent modeling , 2013, CIKM.

[55]  Jackie Chi Kit Cheung,et al.  Sequence clustering and labeling for unsupervised query intent discovery , 2012, WSDM '12.

[56]  Lidong Bing,et al.  Web Query Reformulation via Joint Modeling of Latent Topic Dependency and Term Context , 2015, TOIS.

[57]  Pertti Vakkari,et al.  A theory of the task-based information retrieval process: a summary and generalisation of a longitudinal study , 2001, J. Documentation.

[58]  Enhong Chen,et al.  Context-aware query suggestion by mining click-through and session data , 2008, KDD.

[59]  Tao Zhang,et al.  Understanding Faceted Search from Data Science and Human Factor Perspectives , 2019, ACM Trans. Inf. Syst..

[60]  KekäläinenJaana Binary and graded relevance in IR evaluations , 2005 .

[61]  Ben Shneiderman,et al.  From Keyword Search to Exploration: Designing Future Search Interfaces for the Web , 2010, Found. Trends Web Sci..

[62]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[63]  JärvelinKalervo,et al.  Task complexity affects information seeking and use , 1995 .

[64]  Samuel Kaski,et al.  Interactive intent modeling , 2014, Commun. ACM.