A numerical strategy to discretize and solve the Poisson equation on dynamically adapted multiresolution grids for time-dependent streamer discharge simulations

We develop a numerical strategy to solve multi-dimensional Poisson equations on dynamically adapted grids for evolutionary problems disclosing propagating fronts. The method is an extension of the multiresolution finite volume scheme used to solve hyperbolic and parabolic time-dependent PDEs. Such an approach guarantees a numerical solution of the Poisson equation within a user-defined accuracy tolerance. Most adaptive meshing approaches in the literature solve elliptic PDEs level-wise and hence at uniform resolution throughout the set of adapted grids. Here we introduce a numerical procedure to represent the elliptic operators on the adapted grid, strongly coupling inter-grid relations that guarantee the conservation and accuracy properties of multiresolution finite volume schemes. The discrete Poisson equation is solved at once over the entire computational domain as a completely separate process. The accuracy and numerical performance of the method are assessed in the context of streamer discharge simulations.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Kai Schneider,et al.  Adaptive multiresolution methods , 2011 .

[3]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[4]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[5]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[6]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Elliptic Problems - Implementation and Numerical Experiments , 2001, SIAM J. Sci. Comput..

[7]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[8]  Cosmin Safta,et al.  A high-order low-Mach number AMR construction for chemically reacting flows , 2010, J. Comput. Phys..

[9]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[10]  Oleg V. Vasilyev,et al.  Second-generation wavelet collocation method for the solution of partial differential equations , 2000 .

[11]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[12]  A. Bourdon,et al.  Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations , 2007 .

[13]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[14]  O. Vasilyev,et al.  Wavelet Methods in Computational Fluid Dynamics , 2010 .

[15]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[16]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[17]  N. Babaeva,et al.  Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air , 1996 .

[18]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[19]  T. E. Nelson,et al.  Submillisecond imaging of sprite development and structure , 2006 .

[20]  S. SIAMJ.,et al.  AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .

[21]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[22]  Phillip Colella,et al.  A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions , 2007, J. Comput. Phys..

[23]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001 .

[24]  Marc Massot,et al.  Time–space adaptive numerical methods for the simulation of combustion fronts , 2013 .

[25]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[26]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.

[27]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[28]  Sidi Mahmoud Kaber,et al.  Fully adaptive multiresolution nite volume s hemes for onservation , 2000 .

[29]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[30]  Kolja Brix,et al.  Adaptive Multiresolution Methods: Practical issues on Data Structures, Implementation and Parallelization* , 2011 .

[31]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[32]  I. A. Kossyi,et al.  Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures , 1992 .

[33]  U. Ebert,et al.  Reconnection and merging of positive streamers in air , 2008, 0810.4443.

[34]  Marc Massot,et al.  New Resolution Strategy for Multiscale Reaction Waves using Time Operator Splitting, Space Adaptive Multiresolution, and Dedicated High Order Implicit/Explicit Time Integrators , 2012, SIAM J. Sci. Comput..

[35]  Lothar Schäfer,et al.  Multiple scales in streamer discharges, with an emphasis on moving boundary approximations , 2010 .

[36]  Kai Schneider,et al.  Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension , 2008, 0807.0400.

[37]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[38]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[39]  Marc Massot,et al.  A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations , 2011, J. Comput. Phys..

[40]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[41]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[42]  U. Ebert,et al.  Circuit dependence of the diameter of pulsed positive streamers in air , 2006 .

[43]  S. Jaffard Wavelet methods for fast resolution of elliptic problems , 1992 .

[44]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[47]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[48]  Willem Hundsdorfer,et al.  An adaptive grid refinement strategy for the simulation of negative streamers , 2006, J. Comput. Phys..

[49]  Marc Massot,et al.  Simulation of human ischemic stroke in realistic 3D geometry , 2010, Commun. Nonlinear Sci. Numer. Simul..

[50]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[51]  Marc Massot,et al.  New Resolution Strategy for Multi-scale Reaction Waves using Time Operator Splitting and Space Adaptive Multiresolution: Application to Human Ischemic Stroke , 2011 .

[52]  A. Bourdon,et al.  Application of photoionization models based on radiative transfer and the Helmholtz equations to studies of streamers in weak electric fields , 2007 .

[53]  Wolfgang Dahmen,et al.  Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations , 1997 .

[54]  Albert Cohen,et al.  Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.

[55]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[56]  Mikhail S. Benilov,et al.  Modelling of low-current discharges in atmospheric-pressure air taking account of non-equilibrium effects , 2003 .

[57]  Oleg V. Vasilyev,et al.  Solving Multi-dimensional Evolution Problems with Localized Structures using Second Generation Wavelets , 2003 .

[58]  Nicholas K.-R. Kevlahan,et al.  An adaptive multilevel wavelet collocation method for elliptic problems , 2005 .

[59]  J. Lowke,et al.  Streamer propagation in air , 1997 .

[60]  Barna L. Bihari,et al.  Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..

[61]  François Rogier,et al.  Multi-scale gas discharge simulations using asynchronous adaptive mesh refinement , 2010, Comput. Phys. Commun..

[62]  Albert Cohen,et al.  Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..

[63]  Anne Bourdon,et al.  Numerical simulation of filamentary discharges with parallel adaptive mesh refinement , 2008, J. Comput. Phys..

[64]  W. Hundsdorfer,et al.  Interaction of streamer discharges in air and other oxygen-nitrogen mixtures. , 2007, Physical review letters.

[65]  Axel Klar,et al.  Simplified P N approximations to the equations of radiative heat transfer and applications , 2002 .

[66]  A. Kulikovsky Positive streamer between parallel plate electrodes in atmospheric pressure air , 1997 .