A general stability result in a memory-type Timoshenko system

In this paper we consider the following Timoshenko system \begin{eqnarray*} \varphi _{t t}-(\varphi _{x}+\psi )_{x}=0,\quad (0,1)\times R^+\\ \psi _{t t}-\psi _{x x}+\varphi _{x}+\psi +\int_0^t g(t-\tau )\psi_{x x}(\tau )d\tau =0,\quad (0,1)\times R^{+} \end{eqnarray*} with Dirichlet boundary conditions where $g$ is a positive nonincreasing function satisfying \begin{eqnarray*} g'(t)\leq -H(g(t)) \end{eqnarray*} and $H$ is a function satisfying some regularity and convexity conditions. We establish a general stability result for this system.

[1]  Fatiha Alabau-Boussouira Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control , 2007 .

[2]  Salim A. Messaoudi,et al.  On the control of a viscoelastic damped Timoshenko-type system , 2008, Appl. Math. Comput..

[3]  Jaime E. Muñoz Rivera,et al.  Global stability for damped Timoshenko systems , 2003 .

[4]  Shuichi Kawashima,et al.  DECAY PROPERTY OF REGULARITY-LOSS TYPE FOR DISSIPATIVE TIMOSHENKO SYSTEM , 2008 .

[5]  On the stabilization of the Timoshenko system by a weak nonlinear dissipation , 2009 .

[6]  Hugo D. Fernández Sare,et al.  On the Stability of Damped Timoshenko Systems: Cattaneo Versus Fourier Law , 2009 .

[7]  S. Messaoudi,et al.  General energy decay rates for a weakly damped Timoshenko system , 2010 .

[8]  Salim A. Messaoudi,et al.  Energy decay in a Timoshenko-type system of thermoelasticity of type III , 2008 .

[9]  Mauro de Lima Santos,et al.  Exponential stability for the Timoshenko system with two weak dampings , 2005, Appl. Math. Lett..

[10]  R. Racke,et al.  Energy decay for Timoshenko systems of memory type , 2003 .

[11]  R. Racke,et al.  Timoshenko systems with indefinite damping , 2008 .

[12]  S. Kawashima,et al.  DECAY PROPERTY FOR THE TIMOSHENKO SYSTEM WITH MEMORY-TYPE DISSIPATION , 2012 .

[13]  H. F. Sare,et al.  Stability of Timoshenko systems with past history , 2008 .

[14]  Salim A. Messaoudi,et al.  Uniform decay in a Timoshenko-type system with past history , 2009 .

[15]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[16]  Fatiha Alabau-Boussouira,et al.  Partial Differential Equations/Optimal Control A general method for proving sharp energy decay rates for memory-dissipative evolution equations , 2009 .

[17]  Michael Pokojovy,et al.  Nonlinear damped Timoshenko systems with second sound—Global existence and exponential stability , 2009, 1811.01128.

[18]  Abdelaziz Soufyane,et al.  UNIFORM STABILIZATION FOR THE TIMOSHENKO BEAM BY A LOCALLY DISTRIBUTED DAMPING , 2003 .

[19]  DECAY PROPERTY OF REGULARITY-LOSS TYPE AND NONLINEAR EFFECTS FOR DISSIPATIVE TIMOSHENKO SYSTEM , 2008 .

[20]  R. Racke,et al.  Mildly dissipative nonlinear Timoshenko systems—global existence and exponential stability☆ , 2002 .

[21]  On the Internal and Boundary Stabilization of Timoshenko Beams , 2008 .

[22]  Salim A. Messaoudi,et al.  On the control of solutions of a viscoelastic equation , 2007, J. Frankl. Inst..

[23]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[24]  J. U. Kim,et al.  Boundary control of the Timoshenko beam , 1987 .

[25]  Salim A. Messaoudi,et al.  Energy decay in a Timoshenko-type system with history in thermoelasticity of type III , 2009, Advances in Differential Equations.

[26]  S. Messaoudi,et al.  General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping , 2009 .