ResistoMap—online visualization of human gut microbiota antibiotic resistome

Abstract We created ResistoMap—a Web-based interactive visualization of the presence of genetic determinants conferring resistance to antibiotics, biocides and heavy metals in human gut microbiota. ResistoMap displays the data on more than 1500 published gut metagenomes of world populations including both healthy subjects and patients. Multiparameter display filters allow visual assessment of the associations between the meta-data and proportions of resistome. The geographic map navigation layer allows to state hypotheses regarding the global trends of antibiotic resistance and correlates the gut resistome variations with the national clinical guidelines on antibiotics application. Availability and Implementation ResistoMap was implemented using AngularJS, CoffeeScript, D3.js and TopoJSON. The tool is publicly available at http://resistomap.rcpcm.org. Supplementary information Supplementary data are available at Bioinformatics online.

[1]  M. Mckee,et al.  Factors influencing antibiotic prescribing in China: an exploratory analysis. , 2009, Health policy.

[2]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[3]  Ali H. A. Elbehery,et al.  Antibiotic Resistome: Improving Detection and Quantification Accuracy for Comparative Metagenomics. , 2016, Omics : a journal of integrative biology.

[4]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[5]  J. O'Neill,et al.  Tackling drug-resistant infections globally: final report and recommendations , 2016 .

[6]  M. Willmann,et al.  Translational metagenomics and the human resistome: confronting the menace of the new millennium , 2016, Journal of Molecular Medicine.

[7]  Peer Bork,et al.  Country-specific antibiotic use practices impact the human gut resistome , 2013, Genome research.

[8]  Rob Knight,et al.  The microbiome of uncontacted Amerindians , 2015, Science Advances.

[9]  Jian Wang,et al.  Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota , 2013, Nature Communications.

[10]  G. Church,et al.  Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora , 2009, Science.

[11]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[12]  S. Rampelli,et al.  Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota , 2015, Current Biology.

[13]  I. Phillips,et al.  The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. , 2003, The Journal of antimicrobial chemotherapy.

[14]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[15]  Cecil M. Lewis,et al.  Subsistence strategies in traditional societies distinguish gut microbiomes , 2015, Nature Communications.

[16]  Otto X. Cordero,et al.  Ecology drives a global network of gene exchange connecting the human microbiome , 2011, Nature.

[17]  Andrew C. Pawlowski,et al.  The Comprehensive Antibiotic Resistance Database , 2013, Antimicrobial Agents and Chemotherapy.

[18]  H. Goossens,et al.  Outpatient antibiotic use in Europe and association with resistance: a cross-national database study , 2005, The Lancet.

[19]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[20]  Jens Roat Kultima,et al.  Potential of fecal microbiota for early‐stage detection of colorectal cancer , 2014 .

[21]  Erik Kristiansson,et al.  BacMet: antibacterial biocide and metal resistance genes database , 2013, Nucleic Acids Res..

[22]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[23]  E. Segal,et al.  Personalized Nutrition by Prediction of Glycemic Responses , 2015, Cell.

[24]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[25]  L. Stratchounski,et al.  The inventory of antibiotics in Russian home medicine cabinets. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[26]  Daniel H. Huson,et al.  Antibiotic Selection Pressure Determination through Sequence-Based Metagenomics , 2015, Antimicrobial Agents and Chemotherapy.

[27]  Dmitry G. Alexeev,et al.  Human gut microbiota community structures in urban and rural populations in Russia , 2013, Nature Communications.

[28]  N. Caroff,et al.  Nosocomial outbreak of carbapenem-resistant Enterobacter cloacae highlighting the interspecies transferability of the blaOXA-48 gene in the gut flora. , 2012, The Journal of antimicrobial chemotherapy.

[29]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[30]  Masahira Hattori,et al.  The gut microbiome of healthy Japanese and its microbial and functional uniqueness , 2016, DNA research : an international journal for rapid publication of reports on genes and genomes.

[31]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[32]  Molly K. Gibson,et al.  Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome , 2016, Nature Microbiology.

[33]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.