Diffusion-induced banding of colloid particles via diffusiophoresis: 2. Non-electrolytes

Abstract We have extended the stopped-flow diffusion cell (SFDC) technique (Staffeld, P. O., and Quinn, J. A., J. Colloid Interface Sci. 130, 69 (1989) to measurements of nonelectrolyte diffusiophoresis using 1-μm diameter latex particles in gradients of Dextran and Percoll. Dextran, a slightly branched nonionic polymer, and Percoll, a negatively charged polymer coated silica particle, interact with latex via steric exclusion at the latex surface. Anderson and Prieve's theory of nonelectrolyte diffusiophoresis is used to interpret the experimental measurements. Interaction parameters determined from our measurements are physically realistic and consistent with theoretical predictions.

[1]  Douglas A. Lauffenburger,et al.  MATHEMATICAL ANALYSIS OF CELL TRANSPORT PHENOMENA: BACTERIAL CHEMOTAXIS IN THE CAPILLARY ASSAY , 1987 .

[2]  J. Anderson,et al.  Mechanism of osmotic flow in porous membranes. , 1974, Biophysical journal.

[3]  T. Laurent,et al.  Physical chemical characterization of percoll. II. Size and interaction of colloidal particles , 1980 .

[4]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[5]  T. Laurent,et al.  Physical chemical characterization of percoll. I. Particle weight of the colloid , 1980 .

[6]  J. A. Shaeiwitz,et al.  Measurement of diffusiophoresis in liquids , 1984 .

[7]  T. Laurent,et al.  Physical chemical characterization of percoll. III. Sodium binding , 1980 .

[8]  D. Prieve,et al.  Accelerated deposition of latex particles onto a rapidly dissolving steel surface , 1982 .

[9]  L. G. Longsworth Tests of flowing junction diffusion cells with interference methods. , 1950, The Review of scientific instruments.

[10]  D. Prieve,et al.  Electromigration of latex induced by a salt gradient , 1983 .

[11]  D. Prieve,et al.  Motion of a particle generated by chemical gradients. Part 2. Electrolytes , 1982, Journal of Fluid Mechanics.

[12]  Gary Patterson,et al.  Hindered diffusion of dextran and ficoll in microporous membranes , 1984 .

[13]  H. Schlichting Boundary Layer Theory , 1955 .

[14]  T. Dąbroś,et al.  NoteFlexible bonds between latex particles and solid surfaces , 1983 .

[15]  J. L. Anderson,et al.  Transport Mechanisms of Biological Colloids a , 1986, Annals of the New York Academy of Sciences.

[16]  M. Bronner‐Fraser Distribution of latex beads and retinal pigment epithelial cells along the ventral neural crest pathway. , 1982, Developmental biology.

[17]  D. Prieve,et al.  Diffusiophoresis of a rigid sphere through a viscous electrolyte solution , 1987 .

[18]  John L. Anderson,et al.  Diffusiophoresis of latex particles in electrolyte gradients , 1988 .

[19]  J. Waterbury,et al.  A Cyanobacterium Capable of Swimming Motility , 1985, Science.

[20]  D. N. Pinder,et al.  A pulsed field gradient NMR study of self-diffusion in a polydisperse polymer system: dextran in water , 1983 .

[21]  F. Lanni,et al.  Brownian motion of a hydrosol particle in a colloidal force field , 1987 .

[22]  J. A. Quinn,et al.  Diffusion-induced banding of colloid particles via diffusiophoresis , 1989 .

[23]  D. Prieve,et al.  Diffusiophoresis: Migration of Colloidal Particles in Gradients of Solute Concentration , 1984 .

[24]  Mach‐Zehnder Interferometer for Diffusion Measurements in Volatile Liquid Systems , 1957 .