Bandgap engineering of monodispersed Cu(2-x)S(y)Se(1-y) nanocrystals through chalcogen ratio and crystal structure.

Bandgap engineering is important in light-absorption optimization of nanocrystals (NCs) for applications such as highly efficient solar cells. Herein, a facile one-pot method is developed to synthesize monodispersed ternary alloyed copper sulfide selenide (Cu(2-x)S(y)Se(1-y)) NCs with tunable composition, structure, and morphology. The energy bandgaps can be tuned with the chalcogen ratio, and the crystal structure of the NCs is found to produce an effect on their bandgap and light absorption. The results are significant in bandgap engineering of semiconductor NCs.

[1]  Matthew G. Panthani,et al.  Copper selenide nanocrystals for photothermal therapy. , 2011, Nano letters.

[2]  Haotong Wei,et al.  Synthesis of Cu2–xSe Nanocrystals by Tuning the Reactivity of Se , 2011 .

[3]  A Paul Alivisatos,et al.  Assembled monolayer nanorod heterojunctions. , 2011, ACS nano.

[4]  Ilka Kriegel,et al.  Tuning the light absorption of Cu 1.97 S nanocrystals in supercrystal structures , 2011 .

[5]  Prashant Kumar,et al.  Synthesis of Cu1.8S and CuS from copper-thiourea containing precursors; anionic (Cl(-), NO3(-), SO4(2-)) influence on the product stoichiometry. , 2011, Inorganic chemistry.

[6]  A. Prieto,et al.  Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. , 2011, Journal of the American Chemical Society.

[7]  Shui-Tong Lee,et al.  Synthesis of Homogeneously Alloyed Cu2−x(SySe1−y) Nanowire Bundles with Tunable Compositions and Bandgaps , 2010 .

[8]  Wei Lu,et al.  Copper sulfide nanoparticles for photothermal ablation of tumor cells. , 2010, Nanomedicine.

[9]  Xiaoming Li,et al.  Columnar self-assembly of Cu2S hexagonal nanoplates induced by tin(IV)-X complex as inorganic surface ligand. , 2010, Journal of the American Chemical Society.

[10]  Yu‐Guo Guo,et al.  Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high-performance organic-inorganic hybrid photodetectors. , 2010, Journal of the American Chemical Society.

[11]  Xiaogang Peng Band gap and composition engineering on a nanocrystal (BCEN) in solution. , 2010, Accounts of chemical research.

[12]  Zhenda Lu,et al.  One-pot synthesis and optical property of copper(I) sulfide nanodisks. , 2010, Inorganic chemistry.

[13]  L. Manna,et al.  Phosphine-free synthesis of p-type copper(I) selenide nanocrystals in hot coordinating solvents. , 2010, Journal of the American Chemical Society.

[14]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[15]  H. Kim,et al.  Colloidal Synthesis of Cubic-Phase Copper Selenide Nanodiscs and Their Optoelectronic Properties , 2010 .

[16]  J. Arbiol,et al.  Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y). , 2010, Journal of the American Chemical Society.

[17]  Ming‐Yong Han,et al.  Composition-tunable alloyed semiconductor nanocrystals. , 2010, Accounts of chemical research.

[18]  Shui-Tong Lee,et al.  Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles. , 2010, ACS nano.

[19]  Shuming Nie,et al.  Semiconductor nanocrystals: structure, properties, and band gap engineering. , 2010, Accounts of chemical research.

[20]  A. Kellock,et al.  12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process† , 2010 .

[21]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[22]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.

[23]  H. Hillhouse,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[24]  T. Hyeon,et al.  Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals , 2009 .

[25]  Jun‐Jie Zhu,et al.  Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. , 2009, Journal of the American Chemical Society.

[26]  Inhwa Jung,et al.  Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. , 2009, Nano letters.

[27]  T. Omata,et al.  Colloidal Synthesis of Ternary Copper Indium Diselenide Quantum Dots and Their Optical Properties , 2009 .

[28]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[29]  Matthew G. Panthani,et al.  Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. , 2008, Journal of the American Chemical Society.

[30]  Deren Yang,et al.  Phase-Selective Synthesis and Self-Assembly of Monodisperse Copper Sulfide Nanocrystals , 2008 .

[31]  Rakesh Agrawal,et al.  Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. , 2008, Nano letters (Print).

[32]  A Paul Alivisatos,et al.  Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. , 2008, Nano letters.

[33]  Yadong Li,et al.  Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. , 2008, Journal of the American Chemical Society.

[34]  L. An,et al.  Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. , 2008, Journal of the American Chemical Society.

[35]  Xia Fan,et al.  Dart-shaped tricrystal ZnS nanoribbons. , 2006, Angewandte Chemie.

[36]  T. Hyeon,et al.  One-pot synthesis of copper-indium sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes. , 2006, Journal of the American Chemical Society.

[37]  Y. Qian,et al.  Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. , 2005, The journal of physical chemistry. B.

[38]  M. El-Sayed Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. , 2004, Accounts of chemical research.

[39]  M. Mori,et al.  Valence band photoemission study of the copper chalcogenide compounds, Cu2S, Cu2Se and Cu2Te , 2003 .

[40]  B. Korgel,et al.  Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. , 2003, Journal of the American Chemical Society.

[41]  N. Greenham,et al.  Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers , 2003 .

[42]  T. Hasegawa,et al.  Nanometer-scale switches using copper sulfide , 2003 .

[43]  B. Korgel,et al.  Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. , 2003, Journal of the American Chemical Society.

[44]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[45]  N. Xu,et al.  Field emission from crystalline copper sulphide nanowire arrays , 2002 .

[46]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[47]  Xuchuan Jiang,et al.  Sonochemical Synthesis and Mechanistic Study of Copper Selenides Cu2-xSe, β-CuSe, and Cu3Se2 , 2002 .

[48]  Y. Qian,et al.  A redox reaction to synthesize nanocrystalline Cu2-xSe in aqueous solution. , 2000, Inorganic chemistry.

[49]  T. Healy,et al.  Spectroscopic studies on copper sulfide sols , 1991 .

[50]  M. Buerger,et al.  Distribution of Atoms in High Chalcocite, Cu2S , 1963, Science.

[51]  Jun Liu,et al.  Rapid and scalable route to CuS biosensors: a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor , 2011 .

[52]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.