On the Optical Response of Nanoparticles: Directionality Effects and Optical Forces

Nowadays, miniaturization is a general challenge for technology. Researchers in science and technology claim to study ever smaller systems and develop ever smaller devices. The nanometric range is, at present, an important focus of attention of scientists and engineers following the famous prediction by Prof. Feynman: “There’s plenty of room at the bottom”. Reduction of dimensions, at this level, involves that more specific and more complex tools are needed.

[1]  Ronald G. Pinnick,et al.  Nonunitarity of the light scattering approximations. , 1979, Applied optics.

[2]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[3]  V. Shalaev Transforming Light , 2008, Science.

[4]  Manuel Nieto-Vesperinas,et al.  Nonconservative electric and magnetic optical forces on submicron dielectric particles , 2011 .

[5]  Teri W Odom,et al.  Broadband plasmonic microlenses based on patches of nanoholes. , 2010, Nano letters.

[6]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[7]  Joseph T. Hodges,et al.  Failure of the Optical Theor em for Gaussian-Beam Scatt ering by a Spherical Particle , 1995 .

[8]  M. Nieto-Vesperinas,et al.  Near-field photonic forces , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Jin Au Kong,et al.  Optical momentum transfer to absorbing mie particles. , 2006, Physical review letters.

[10]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[11]  Giovanni Volpe,et al.  Surface plasmon radiation forces. , 2006, Physical review letters.

[12]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[13]  P. C. Chaumet,et al.  Optical binding of particles with or without the presence of a flat dielectric surface , 2001, physics/0305045.

[14]  Naomi J Halas,et al.  Light-bending nanoparticles. , 2009, Nano letters.

[15]  Haensch,et al.  Two-dimesional atomic crystal bound by light. , 1993, Physical review letters.

[16]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[17]  Tomasz Grzegorczyk,et al.  Ab initio study of the radiation pressure on dielectric and magnetic media. , 2005, Optics express.

[18]  Courtois,et al.  Dynamics and spatial order of cold cesium atoms in a periodic optical potential. , 1992, Physical review letters.

[19]  M Nieto-Vesperinas,et al.  Resonant radiation pressure on neutral particles in a waveguide. , 2001, Physical review letters.

[20]  P. C. Chaumet,et al.  Electromagnetic force on a metallic particle in the presence of a dielectric surface. , 2000 .

[21]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[22]  Boris N. Chichkov,et al.  Optical response features of Si-nanoparticle arrays , 2010 .

[23]  Phillips,et al.  Observation of quantized motion of Rb atoms in an optical field. , 1992, Physical review letters.

[24]  K. Dholakia,et al.  One-dimensional optically bound arrays of microscopic particles. , 2002, Physical review letters.

[25]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[26]  Juan José Sáenz,et al.  Unusually strong optical interactions between particles in quasi-one-dimensional geometries. , 2004, Physical review letters.

[27]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[28]  Masud Mansuripur,et al.  Radiation pressure and the linear momentum of the electromagnetic field in magnetic media. , 2007, Optics express.

[29]  J. Sáenz,et al.  Angle-suppressed scattering and optical forces on submicrometer dielectric particles. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  Andrea Alù,et al.  How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem? , 2010 .

[31]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[32]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[33]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[34]  C. Lee Giles,et al.  Electromagnetic scattering by magnetic spheres , 1983 .

[35]  Juan José Sáenz,et al.  Light control of silver nanoparticle's diffusion. , 2011, Optics express.

[36]  P. C. Chaumet,et al.  Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate , 2000, physics/0305042.

[37]  J. Sáenz,et al.  Optical forces on small magnetodielectric particles. , 2010, Optics express.

[38]  Fernando Moreno,et al.  Nanoparticles with unconventional scattering properties: Size effects , 2010 .

[39]  Akhlesh Lakhtakia,et al.  On Two Numerical Techniques for Light Scattering by Dielectric Agglomerated Structures , 1993, Journal of research of the National Institute of Standards and Technology.

[40]  Burns,et al.  Optical binding. , 1989, Physical review letters.

[41]  Masud Mansuripur Radiation pressure and the linear momentum of the electromagnetic field. , 2004, Optics express.

[42]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[43]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[44]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[45]  Roger J. Zemp Nanomedicine: detecting rare cancer cells. , 2009, Nature nanotechnology.

[46]  G. W. 't Hooft,et al.  Comment on "negative refraction makes a perfect lens". , 2001 .

[47]  Nikolay I Zheludev,et al.  The Road Ahead for Metamaterials , 2010, Science.

[48]  P. Chaumet,et al.  Electromagnetic force and torque on magnetic and negative-index scatterers. , 2009, Optics express.

[49]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[50]  Fernando Moreno,et al.  Distance limit of the directionality conditions for the scattering of nanoparticles , 2010 .

[51]  R Alcaraz de la Osa,et al.  Directionality in scattering by nanoparticles: Kerker's null-scattering conditions revisited. , 2011, Optics letters.

[52]  J. Jackson Classical Electrodynamics, 3rd Edition , 1998 .

[53]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[54]  Jin Au Kong,et al.  Lorentz Force on Dielectric and Magnetic Particles , 2006 .

[55]  Akhlesh Lakhtakia Radiation Pressure Efficiencies of Spheres Made of Isotropic, Achiral, Passive, Homogeneous, Negative-Phase-Velocity Materials , 2008 .

[56]  Juan José Sáenz,et al.  Scattering forces from the curl of the spin angular momentum of a light field. , 2009, Physical review letters.

[57]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[58]  M. Nieto-Vesperinas,et al.  Optical trapping and manipulation of nano-objects with an apertureless probe. , 2002, Physical review letters.