Engineered WO3 nanorods for conformal growth of WO3/BiVO4 core–shell heterojunction towards efficient photoelectrochemical water oxidation

[1]  Jinzhan Su,et al.  A Place in the Sun for Artificial Photosynthesis , 2016 .

[2]  Liejin Guo,et al.  Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting , 2016, Nano Research.

[3]  Joaquin Resasco,et al.  TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment , 2016, ACS central science.

[4]  Jingjing Li,et al.  Photoelectrochemical studies on BiVO4 membranes deposition on transparent conductive substrates by a facile electrophoresis route , 2016, Journal of Materials Science: Materials in Electronics.

[5]  J. Zhong,et al.  Solar Water Splitting by TiO2/CdS/Co–Pi Nanowire Array Photoanode Enhanced with Co–Pi as Hole Transfer Relay and CdS as Light Absorber , 2015 .

[6]  Prashant V. Kamat,et al.  Dynamics of Photogenerated Charge Carriers in WO3/BiVO4 Heterojunction Photoanodes , 2015 .

[7]  L. H. Dall’Antonia,et al.  Dip-coating deposition of BiVO4/NiO p–n heterojunction thin film and efficiency for methylene blue degradation , 2015, Journal of Materials Science: Materials in Electronics.

[8]  Ang Li,et al.  Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes. , 2015, Journal of the American Chemical Society.

[9]  K. V. Khot,et al.  Synthesis, characterization and photoelectrochemical properties of PbS sensitized vertically aligned ZnO nanorods: modified aqueous route , 2015, Journal of Materials Science: Materials in Electronics.

[10]  Takehiko Kitamori,et al.  Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency , 2015, Scientific Reports.

[11]  Wenhua Zuo,et al.  Fabrication and Shell Optimization of Synergistic TiO2‐MoO3 Core–Shell Nanowire Array Anode for High Energy and Power Density Lithium‐Ion Batteries , 2015 .

[12]  Min Woo Kim,et al.  Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting , 2015 .

[13]  S. Nishanthi,et al.  An insight into the influence of morphology on the photoelectrochemical activity of TiO2 nanotube arrays , 2015 .

[14]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[15]  Sang Ho Oh,et al.  Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures , 2014, Nature Communications.

[16]  K. Mawatari,et al.  Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting. , 2014, Small.

[17]  Bo Wang,et al.  Hierarchical TiO2-CuInS2 core-shell nanoarrays for photoelectrochemical water splitting. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Xiaolin Zheng,et al.  Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. , 2014, Nano letters.

[19]  B. P. Jelle,et al.  Visible-Light-Driven Photochromism of Hexagonal Sodium Tungsten Bronze Nanorods , 2013 .

[20]  R. Amal,et al.  Influence of annealing temperature of WO3 in photoelectrochemical conversion and energy storage for water splitting. , 2013, ACS applied materials & interfaces.

[21]  Yiseul Park,et al.  Progress in bismuth vanadate photoanodes for use in solar water oxidation. , 2013, Chemical Society reviews.

[22]  Xiaolin Zheng,et al.  Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting , 2013 .

[23]  Y. Ping,et al.  Thermally stable N2-intercalated WO3 photoanodes for water oxidation. , 2012, Journal of the American Chemical Society.

[24]  S. Yin,et al.  Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[25]  Liejin Guo,et al.  Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting. , 2011, Nano letters.

[26]  Liejin Guo,et al.  Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. , 2011, Nano letters.

[27]  Yoshinori Murakami,et al.  Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation , 2009 .

[28]  E. Schubert,et al.  Polaron and Phonon Properties in Proton Intercalated Amorphous Tungsten Oxide Thin Films , 2008 .

[29]  L. Ge Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation , 2008 .

[30]  J. Grunwaldt,et al.  Morphological and Kinetic Studies on Hexagonal Tungstates , 2007 .

[31]  T. Rajh,et al.  Electron transfer reactions and flat-band potentials of tungsten(VI) oxide colloids , 1984 .

[32]  T. Rajh,et al.  Electron transfer reactions and flat-band potentials of WO3 colloids , 1984 .

[33]  R. Bhattacharya Solution Growth and Electrodeposited CuInSe2Thin Films , 1983 .

[34]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[35]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.