Additive representation of symmetric inverse M-matrices and potentials

In this article we characterize the closed cones respectively generated by the symmetric inverse M-matrices and by the inverses of symmetric row diagonally dominant M-matrices. We show the latter has a finite number of extremal rays, while the former has infinitely many extremal rays. As a consequence we prove that every potential is the sum of ultrametric matrices.

[1]  Richard S. Varga,et al.  A Linear Algebra Proof that the Inverse of a Strictly UltrametricMatrix is a Strictly Diagonally Dominant Stieltjes Matrix , 1994 .

[2]  J. Moon Counting labelled trees , 1970 .

[3]  Charles R. Johnson Inverse M-matrices☆ , 1982 .

[4]  G. Kirchhoff On the Solution of the Equations Obtained from the Investigation of the Linear Distribution of Galvanic Currents , 1958 .

[5]  S. Martínez,et al.  Inverse of Strictly Ultrametric Matrices are of Stieltjes Type , 1994 .

[6]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Claude Dellacherie,et al.  Hadamard Functions that Preserve Inverse M-Matrices , 2012, SIAM J. Matrix Anal. Appl..

[9]  C. Dellacherie,et al.  Ultrametric Matrices and Induced Markov Chains , 1996 .

[10]  Noyaux potentiels associés à une filtration , 1998 .

[11]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[12]  Operateurs filtres et chaines de tribus invariantes sur un espace probabilise denombrable , 1988 .

[13]  G. Walter,et al.  Graphs and Matrices , 1999 .

[14]  Sundaram Seshu,et al.  Linear Graphs and Electrical Networks , 1961 .

[15]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[16]  Richard James Duffin,et al.  An analysis of the Wang algebra of networks , 1959 .

[17]  Claude Dellacherie,et al.  Hadamard Functions of Inverse M-Matrices , 2009, SIAM J. Matrix Anal. Appl..

[18]  C. Dellacherie,et al.  Inverse M-Matrices and Ultrametric Matrices , 2014 .

[19]  W. K. Chen Graph theory and its engineering applications , 1997 .

[20]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .