A scanning protocol for a sensorimotor rhythm-based brain–computer interface

The scanning protocol is a novel brain-computer interface (BCI) implementation that can be controlled with sensorimotor rhythms (SMRs) of the electroencephalogram (EEG). The user views a screen that shows four choices in a linear array with one marked as target. The four choices are successively highlighted for 2.5s each. When a target is highlighted, the user can select it by modulating the SMR. An advantage of this method is the capacity to choose among multiple choices with just one learned SMR modulation. Each of 10 naive users trained for ten 30 min sessions over 5 weeks. User performance improved significantly (p<0.001) over the sessions and ranged from 30 to 80% mean accuracy of the last three sessions (chance accuracy=25%). The incidence of correct selections depended on the target position. These results suggest that, with further improvements, a scanning protocol can be effective. The ultimate goal is to expand it to a large matrix of selections.

[1]  Masud Mansuripur,et al.  Introduction to information theory , 1986 .

[2]  G. Pfurtscheller,et al.  Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas , 2001, Clinical Neurophysiology.

[3]  J. Wolpaw,et al.  EMG contamination of EEG: spectral and topographical characteristics , 2003, Clinical Neurophysiology.

[4]  G. Pfurtscheller,et al.  Critical Decision-Speed and Information Transfer in the “Graz Brain–Computer Interface” , 2003, Applied psychophysiology and biofeedback.

[5]  Marcel C. M. Bastiaansen,et al.  ERD as an index of anticipatory behaviour. , 1999 .

[6]  Fazlollah M. Reza,et al.  Introduction to Information Theory , 2004, Lecture Notes in Electrical Engineering.

[7]  Jonathan R Wolpaw,et al.  Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Dennis J. McFarland,et al.  Brain-computer interface (BCI) operation: signal and noise during early training sessions , 2005, Clinical Neurophysiology.

[9]  Dean J Krusienski,et al.  Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms. , 2006, Progress in brain research.

[10]  J. Wolpaw,et al.  Multichannel EEG-based brain-computer communication. , 1994, Electroencephalography and clinical neurophysiology.

[11]  Gert Pfurtscheller,et al.  Motor imagery and direct brain-computer communication , 2001, Proc. IEEE.

[12]  G Pfurtscheller,et al.  Graphical display and statistical evaluation of event-related desynchronization (ERD). , 1977, Electroencephalography and clinical neurophysiology.

[13]  G. Pfurtscheller,et al.  EEG-based communication: presence of an error potential , 2000, Clinical Neurophysiology.

[14]  J. Millán,et al.  Error-related EEG potentials in brain-computer interfaces , 2007 .

[15]  N. Birbaumer,et al.  BCI2000: a general-purpose brain-computer interface (BCI) system , 2004, IEEE Transactions on Biomedical Engineering.

[16]  Christa Neuper,et al.  Graz Brain-Computer Interface (BCI) II , 1994, ICCHP.

[17]  D.J. McFarland,et al.  The Wadsworth Center brain-computer interface (BCI) research and development program , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[18]  K. Jellinger Toward Brain-Computer Interfacing , 2009 .

[19]  G Pfurtscheller,et al.  Timing of EEG-based cursor control. , 1997, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[20]  J. Wolpaw,et al.  Mu and Beta Rhythm Topographies During Motor Imagery and Actual Movements , 2004, Brain Topography.

[21]  Gert Pfurtscheller,et al.  Basic concepts on EEG synchronization and desynchronization , 1999 .

[22]  B. Porat,et al.  Digital Spectral Analysis with Applications. , 1988 .

[23]  G. Pfurtscheller Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. , 1992, Electroencephalography and clinical neurophysiology.

[24]  Jonathan R Wolpaw,et al.  EEG-Based Communication and Control: Speed–Accuracy Relationships , 2003, Applied psychophysiology and biofeedback.

[25]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[26]  Event-Related Potential Paradigms Using Tin Electrodes , 1985 .

[27]  G. Pfurtscheller,et al.  Event-related cortical desynchronization detected by power measurements of scalp EEG. , 1977, Electroencephalography and clinical neurophysiology.

[28]  D J McFarland,et al.  An EEG-based brain-computer interface for cursor control. , 1991, Electroencephalography and clinical neurophysiology.

[29]  G. R. Muller,et al.  Clinical application of an EEG-based brain–computer interface: a case study in a patient with severe motor impairment , 2003, Clinical Neurophysiology.

[30]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[31]  H. Lüders,et al.  American Electroencephalographic Society Guidelines for Standard Electrode Position Nomenclature , 1991, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[32]  J. Blom,et al.  An electrode cap tested. , 1982, Electroencephalography and clinical neurophysiology.

[33]  Dennis J. McFarland,et al.  Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans , 2003, Neuroscience Letters.

[34]  Bryan Pardo Finding structure in audio for music information retrieval , 2006 .

[35]  Klaus-Robert Müller,et al.  Toward noninvasive brain-computer interfaces , 2006, IEEE Signal Process. Mag..

[36]  J R Wolpaw,et al.  Spatial filter selection for EEG-based communication. , 1997, Electroencephalography and clinical neurophysiology.

[37]  W. A. Sarnacki,et al.  Brain–computer interface (BCI) operation: optimizing information transfer rates , 2003, Biological Psychology.