Uniform Interpolation and Propositional Quantifiers in Modal Logics
暂无分享,去创建一个
[1] Heinrich Zimmermann,et al. Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.
[2] Philip Kremer. On the Complexity of Propositional Quantification in Intuitionistic Logic , 1997, J. Symb. Log..
[3] Philip Kremer,et al. Quantifying over propositions in relevance logic: nonaxiomatisability of primary interpretations of ∀p and ∃p , 1993, Journal of Symbolic Logic.
[4] Silvio Valentini,et al. The modal logic of provability. The sequential approach , 1982, J. Philos. Log..
[5] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[6] Silvio Valentini,et al. The modal logic of provability: Cut-elimination , 1983, J. Philos. Log..
[7] Silvio Ghilardi,et al. Undefinability of propositional quantifiers in the modal system S4 , 1995, Stud Logica.
[8] Andrew M. Pitts,et al. On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.
[9] Sara Negri,et al. Structural proof theory , 2001 .
[10] D.H.J. de Jongh,et al. The logic of the provability , 1998 .
[11] A. Visser. Bisimulations, model descriptions and propositional quantifiers , 1996 .
[12] Richard E. Ladner,et al. The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..
[13] R. A. Bull. On Modal Logic with Propositional Quantifiers , 1969, J. Symb. Log..
[14] S. Buss. Handbook of proof theory , 1998 .
[15] Heinrich Wansing,et al. Sequent Systems for Modal Logics , 2002 .
[16] Kit Fine,et al. Propositional quantifiers in modal logic1 , 2008 .
[17] Silvio Ghilardi,et al. A Sheaf Representation and Duality for Finitely Presenting Heyting Algebras , 1995, J. Symb. Log..
[18] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[19] Shavrukov,et al. Subalgebras of Diagonalizable Algebras of Theories Containing Arithmetic , 1993 .