Uniform Interpolation and Propositional Quantifiers in Modal Logics

We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view.Our approach is adopted from Pitts’ proof of uniform interpolationin intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over propositional variables and uses a terminating sequent calculus for which structural rules are admissible.We shall present such a proof of the uniform interpolation theorem for normal modal logics K and T. It provides an explicit algorithm constructing the interpolants.

[1]  Heinrich Zimmermann,et al.  Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.

[2]  Philip Kremer On the Complexity of Propositional Quantification in Intuitionistic Logic , 1997, J. Symb. Log..

[3]  Philip Kremer,et al.  Quantifying over propositions in relevance logic: nonaxiomatisability of primary interpretations of ∀p and ∃p , 1993, Journal of Symbolic Logic.

[4]  Silvio Valentini,et al.  The modal logic of provability. The sequential approach , 1982, J. Philos. Log..

[5]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[6]  Silvio Valentini,et al.  The modal logic of provability: Cut-elimination , 1983, J. Philos. Log..

[7]  Silvio Ghilardi,et al.  Undefinability of propositional quantifiers in the modal system S4 , 1995, Stud Logica.

[8]  Andrew M. Pitts,et al.  On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.

[9]  Sara Negri,et al.  Structural proof theory , 2001 .

[10]  D.H.J. de Jongh,et al.  The logic of the provability , 1998 .

[11]  A. Visser Bisimulations, model descriptions and propositional quantifiers , 1996 .

[12]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[13]  R. A. Bull On Modal Logic with Propositional Quantifiers , 1969, J. Symb. Log..

[14]  S. Buss Handbook of proof theory , 1998 .

[15]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[16]  Kit Fine,et al.  Propositional quantifiers in modal logic1 , 2008 .

[17]  Silvio Ghilardi,et al.  A Sheaf Representation and Duality for Finitely Presenting Heyting Algebras , 1995, J. Symb. Log..

[18]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[19]  Shavrukov,et al.  Subalgebras of Diagonalizable Algebras of Theories Containing Arithmetic , 1993 .