Ruthenium Polypyridyl Sensitisers in Dye Solar Cells Based on Mesoporous TiO2

At present, one of the most studied molecular device for the conversion of sunlight into electricity is the dye-sensitised solar cell (DSSC). To date, ruthenium polypyridyl complexes have shown the highest light-to-energy conversion efficiencies because of their photophysical, photochemical and electrochemical properties. In addition, the overall efficiency achieved by DSSCs is strongly dependent on the interfacial charge-transfer reactions that take place between the different components of the solar cell: the injection of electrons into the conduction band of the semiconductor by the dye, the transport of electrons through the semiconductor towards the working electrode contact, dye regeneration by the redox pair present in the electrolyte and the recombination reaction between the photoinjected electrons in the semiconductor and the oxidised species of the dye and the electrolyte. This microreview comprises: (i) the operational principles of complete functional photovoltaic devices and (ii) several synthetic methods, properties and main applications of most relevant homoleptic and heteroleptic ruthenium complexes reported in the literature.

[1]  P. Ghosh,et al.  Photoelectrochemistry of tris(bipyridyl)ruthenium(II) covalently attached to n-type tin(IV) oxide , 1980 .

[2]  S. Yamabe,et al.  Microwave synthesis and electrospectrochemical study on ruthenium(II) polypyridine complexes , 2002 .

[3]  W. Griffith Ruthenium oxo complexes as organic oxidants , 1992 .

[4]  N. Alonso‐Vante,et al.  Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex , 1994 .

[5]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[6]  G. Crosby Spectroscopic investigations of excited states of transition-metal complexes , 1975 .

[7]  A. J. Frank,et al.  Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .

[8]  Peng Wang,et al.  Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks , 2010 .

[9]  Claudia Barolo,et al.  Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films , 2002 .

[10]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[11]  Michael Grätzel,et al.  Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. , 2010, Angewandte Chemie.

[12]  Thomas W. Hamann,et al.  New architectures for dye-sensitized solar cells. , 2008, Chemistry.

[13]  R. Thummel,et al.  Photosensitizers containing the 1,8-naphthyridyl moiety and their use in dye-sensitized solar cells. , 2006, Inorganic chemistry.

[14]  J. Durrant,et al.  Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. , 2008, Journal of the American Chemical Society.

[15]  Md. K. Nazeeruddin,et al.  Tuning of the CT excited state and validity of the energy gap law in mixed ligand complexes of Ru(II) containing 4,4′-dicarboxy-2,2′-bipyridine , 1992 .

[16]  R. Schmehl,et al.  Photophysical behavior of transition metal complexes having interacting ligand localized and metal-to-ligand charge transfer states , 2004 .

[17]  Qing Wang,et al.  Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes , 2006 .

[18]  V. Balzani,et al.  Photochemistry and Photophysics of Coordination Compounds: Overview and General Concepts , 2007 .

[19]  Michael Grätzel,et al.  Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. , 2011, Inorganic chemistry.

[20]  G. Deacon,et al.  Tris(Bidentate)Ruthenium(II) Bis[Hexafluorophosphate] Complexes , 2007 .

[21]  D. Walther,et al.  Efficient synthesis of ruthenium complexes of the type (R-bpy)2RuCl2 and [(R-bpy)2Ru(L–L)]Cl2 by microwave-activated reactions (R: H, Me, tert-But) (L–L: substituted bibenzimidazoles, bipyrimidine, and phenanthroline) , 2004 .

[22]  Giacomo Bergamini,et al.  Photochemistry and Photophysics of Coordination Compounds: Ruthenium , 2007 .

[23]  A. Bard,et al.  Photocurrent generated on a carotenoid-sensitized TiO2 nanocrystalline mesoporous electrode , 2000 .

[24]  Takurou N. Murakami,et al.  Counter electrodes for DSC: Application of functional materials as catalysts , 2008 .

[25]  Elaine A. Medlycott,et al.  Designing tridentate ligands for ruthenium(II) complexes with prolonged room temperature luminescence lifetimes. , 2005, Chemical Society reviews.

[26]  G. Wilkinson,et al.  Dichlorotetrakis(dimethyl sulphoxide)ruthenium(II) and its use as a source material for some new ruthenium(II) complexes , 1973 .

[27]  S. Zakeeruddin,et al.  STEPWISE ASSEMBLY OF TRIS-HETEROLEPTIC POLYPYRIDYL COMPLEXES OF RUTHENIUM(II) , 1998 .

[28]  Jun-Ho Yum,et al.  Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. , 2007, Angewandte Chemie.

[29]  A. Islam,et al.  Synthesis and photophysical properties of ruthenium(II) charge transfer sensitizers containing 4,4′-dicarboxy-2,2′-biquinoline and 5,8-dicarboxy-6,7-dihydro-dibenzo[1,10]-phenanthroline , 2001 .

[30]  Hironori Arakawa,et al.  Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells , 2003 .

[31]  G. Meyer,et al.  Decreased Interfacial Charge Recombination Rate Constants with N3-Type Sensitizers , 2010 .

[32]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[33]  C. Bignozzi,et al.  Molecular level photovoltaics: the electrooptical properties of metal cyanide complexes anchored to titanium dioxide , 1993 .

[34]  Brian A. Gregg,et al.  Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces , 2001 .

[35]  Y. Kang,et al.  Electronic optimization of heteroleptic Ru(II) bipyridine complexes by remote substituents: synthesis, characterization, and application to dye-sensitized solar cells. , 2011, Inorganic chemistry.

[36]  Eiichi Abe,et al.  Properties of several types of novel counter electrodes for dye-sensitized solar cells , 2004 .

[37]  Black MLCT Absorbers , 1994 .

[38]  N. M. Iha,et al.  Metal complex sensitizers in dye-sensitized solar cells , 2004 .

[39]  G. Boschloo,et al.  Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. , 2010, Journal of the American Chemical Society.

[40]  F. Keene,et al.  Stereochemistry in tris(bidentate ligand)ruthenium(II) complexes containing unsymmetrical polypyridyl ligands , 1994 .

[41]  Ivano Tavernelli,et al.  New paradigm in molecular engineering of sensitizers for solar cell applications. , 2009, Journal of the American Chemical Society.

[42]  K. Ho,et al.  Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study , 2007 .

[43]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[44]  Elena Galoppini,et al.  Linkers for anchoring sensitizers to semiconductor nanoparticles , 2004 .

[45]  F. Keene Stereochemistry and polymetallic ligand-bridged molecular assemblies , 1997 .

[46]  A. B. P. Lever,et al.  Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series , 1990 .

[47]  A. Hagfeldt,et al.  Efficient organic-dye-sensitized solar cells based on an iodine-free electrolyte. , 2010, Angewandte Chemie.

[48]  Seigo Ito,et al.  Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. , 2009, Accounts of chemical research.

[49]  Michael Grätzel,et al.  Solvent‐Free Ionic Liquid Electrolytes for Mesoscopic Dye‐Sensitized Solar Cells , 2009 .

[50]  Hironori Arakawa,et al.  Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell , 2004 .

[51]  C. Creutz,et al.  Mechanism of the quenching of the emission of substituted polypyridineruthenium(II) complexes by iron(III), chromium(III), and europium(III) ions , 1976 .

[52]  Anders Hagfeldt,et al.  Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. , 2006, The journal of physical chemistry. B.

[53]  A. Lever,et al.  First-Principles Interpretation of Ligand Electrochemical (EL(L)) Parameters. Factorization of the .sigma. and .pi. Donor and .pi. Acceptor Capabilities of Ligands , 1995 .

[54]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[55]  Leone Spiccia,et al.  High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. , 2011, Nature chemistry.

[56]  D. Mingos,et al.  Application of microwave dielectric loss heating effects for the rapid and convenient synthesis of ruthenium(II) polypyridine complexes , 1991 .

[57]  Elaine A. M. Geary,et al.  Synthesis, structure, and properties of [Pt(II)(diimine)(dithiolate)] dyes with 3,3'-, 4,4'-, and 5,5'-disubstituted bipyridyl: applications in dye-sensitized solar cells. , 2005, Inorganic chemistry.

[58]  Claudia Barolo,et al.  Stepwise Assembly of Amphiphilic Ruthenium Sensitizers and their Applications in Dye Sensitized Solar Cell , 2004 .

[59]  F. H. Burstall 34. Optical activity dependent on co-ordinated bivalent ruthenium , 1936 .

[60]  Nicholas J Long,et al.  Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. , 2004, Journal of the American Chemical Society.

[61]  G. A. Crosby,et al.  Spectroscopic characterization of complexes of ruthenium(II) and iridium(III) with 4,4'-diphenyl-2,2'-bipyridine and 4,7-diphenyl-1,10-phenanthroline , 1971 .

[62]  M. Grätzel,et al.  Efficient and stable solid-state light-emitting electrochemical cell using tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) hexafluorophosphate. , 2006, Journal of the American Chemical Society.

[63]  Harald Hofmeier,et al.  Recent developments in the supramolecular chemistry of terpyridine-metal complexes. , 2004, Chemical Society reviews.

[64]  E. Costa,et al.  Phosphonate-based bipyridine dyes for stable photovoltaic devices. , 2001, Inorganic chemistry.

[65]  S. Pelet,et al.  Cooperative Effect of Adsorbed Cations and Iodide on the Interception of Back Electron Transfer in the Dye Sensitization of Nanocrystalline TiO2 , 2000 .

[66]  Tobin J Marks,et al.  Ni(III)/(IV) bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. , 2010, Journal of the American Chemical Society.

[67]  Yuji Wada,et al.  Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. , 2005, Journal of the American Chemical Society.

[68]  Peng Wang,et al.  A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. , 2004, Journal of the American Chemical Society.

[69]  Emilio Palomares,et al.  Interfacial charge recombination between e(-)-TiO2 and the I(-)/I3(-) electrolyte in ruthenium heteroleptic complexes: dye molecular structure-open circuit voltage relationship. , 2008, Journal of the American Chemical Society.

[70]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[71]  Gerko Oskam,et al.  Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators. , 2005, The journal of physical chemistry. B.

[72]  Michael Grätzel,et al.  Effects of ω-Guanidinoalkyl Acids as Coadsorbents in Dye-Sensitized Solar Cells , 2007 .

[73]  L. Spiccia,et al.  Synthetic routes to homoleptic and heteroleptic ruthenium(II) complexes incorporating bidentate imine ligands , 2004 .

[74]  E. Constable,et al.  Multinucleating 2,2′ : 6′,2″-terpyridine ligands as building blocks for the assembly of co-ordination polymers and oligomers , 1992 .

[75]  W. Maier,et al.  An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media , 1997 .

[76]  P. A. Anderson,et al.  Designed Synthesis of Mononuclear Tris(heteroleptic) Ruthenium Complexes Containing Bidentate Polypyridyl Ligands , 1995 .

[77]  F. Castellano,et al.  Long-Lived Photoinduced Charge Separation across Nanocrystalline TiO2 Interfaces , 1995 .

[78]  P. Chou,et al.  Development of thiocyanate-free, charge-neutral Ru(II) sensitizers for dye-sensitized solar cells. , 2010, Chemical communications.

[79]  P. Liska,et al.  Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells , 2005 .

[80]  H. Pettersson,et al.  The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications , 1996 .

[81]  Peter Lund,et al.  Review of stability for advanced dye solar cells , 2010 .

[82]  Greg P. Smestad,et al.  Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter , 1998 .

[83]  Aylin Çiğdem Köne,et al.  Forecasting of CO2 emissions from fuel combustion using trend analysis , 2010 .

[84]  C. M. Elliott,et al.  Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. , 2002, Journal of the American Chemical Society.

[85]  M. Martínez‐Díaz,et al.  Lighting porphyrins and phthalocyanines for molecular photovoltaics. , 2010, Chemical communications.

[86]  Michael Grätzel,et al.  Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement. , 2005, The journal of physical chemistry. B.

[87]  Lars Kloo,et al.  Ionic liquid electrolytes for dye-sensitized solar cells. , 2008, Dalton transactions.

[88]  Michael Grätzel,et al.  Synthesis, spectroscopic and a ZINDO study of cis- and trans-(X2)bis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) complexes (X=Cl−, H2O, NCS−) , 2000 .

[89]  Neil Robertson,et al.  Optimizing dyes for dye-sensitized solar cells. , 2006, Angewandte Chemie.

[90]  Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells , 2009 .

[91]  Paolo G Bomben,et al.  Cyclometalated Ru complexes of type [Ru(II)(N--N)(2)(C--N)](z): physicochemical response to substituents installed on the anionic ligand. , 2010, Inorganic chemistry.

[92]  Yan Cui,et al.  Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid , 2007 .

[93]  S. Quici,et al.  Sensitization of TiO2 with ruthenium complexes containing boronic acid functions , 2004 .

[94]  R. Lalrempuia,et al.  Reactivity studies of η6-arene ruthenium (II) dimers with polypyridyl ligands: isolation of mono, binuclear p-cymene ruthenium (II) complexes and bisterpyridine ruthenium (II) complexes , 2003 .

[95]  Gerald J. Meyer,et al.  The 2010 millennium technology grand prize: dye-sensitized solar cells. , 2010, ACS nano.

[96]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[97]  Yan Cui,et al.  Exploitation of Ionic Liquid Electrolyte for Dye-Sensitized Solar Cells by Molecular Modification of Organic-Dye Sensitizers , 2009 .

[98]  A. Islam,et al.  Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes. , 2001, Inorganic chemistry.

[99]  L. Spiccia,et al.  Synthesis and structures of photodecarbonylated ruthenium(II) complexes—potential intermediates for mixed ligand complexes , 1999 .

[100]  M. Drew,et al.  Novel synthetic routes to several new, differentially substituted ruthenium tris(4,4 disubstituted-2,2-bipyridine) complexes. , 2000, Inorganic chemistry.

[101]  Vincenzo Balzani,et al.  Luminescent and Redox-Active Polynuclear Transition Metal Complexes. , 1996, Chemical reviews.

[102]  Assaf Y Anderson,et al.  Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. , 2009, Journal of the American Chemical Society.

[103]  V. Balzani,et al.  Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties , 1994 .

[104]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[105]  Hironori Arakawa,et al.  Influence of nitrogen-containing heterocyclic additives in I−/I3− redox electrolytic solution on the performance of Ru-dye-sensitized nanocrystalline TiO2 solar cell , 2005 .

[106]  P. A. Anderson,et al.  Synthesis of polypyridyl complexes of ruthenium(II) containing three different bidentate ligands , 1992 .

[107]  M. Grätzel,et al.  A new efficient photosensitizer for nanocrystalline solar cells: synthesis and characterization of cis-bis(4,7-dicarboxy-1,10-phenanthroline)dithiocyanato ruthenium(II) , 2000 .

[108]  A. Spek,et al.  Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. , 2007, Chemical communications.

[109]  T. Lund,et al.  Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine , 2007 .

[110]  Arunkumar Kathiravan,et al.  Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. , 2009, Journal of colloid and interface science.

[111]  P. T. Nguyen,et al.  Thiocyanate ligand substitution kinetics of the solar cell dye Z-907 by 3-methoxypropionitrile and 4-tert-butylpyridine at elevated temperatures , 2009 .

[112]  S. Haque,et al.  Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells , 2007 .

[113]  S. Ferrere New Photosensitizers Based upon [Fe(L)2(CN)2] and [Fe(L)3] (L = Substituted 2,2‘-Bipyridine): Yields for the Photosensitization of TiO2 and Effects on the Band Selectivity , 2000 .

[114]  S. Ferrere,et al.  Photosensitization of TiO2 by [FeII(2,2‘-bipyridine-4,4‘-dicarboxylic acid)2(CN)2]: Band Selective Electron Injection from Ultra-Short-Lived Excited States , 1998 .

[115]  Anders Hagfeldt,et al.  The influence of cations on charge accumulation in dye-sensitized solar cells , 2007 .

[116]  K. Müllen,et al.  Tris(2,2'-bipyridyl)ruthenium(II) with branched polyphenylene shells: a family of charged shape-persistent nanoparticles. , 2008, Angewandte Chemie.

[117]  R. Ziessel,et al.  cis-[Ru(2,2':6',2' '-terpyridine)(DMSO)Cl(2)]: useful precursor for the synthesis of heteroleptic terpyridine complexes under mild conditions. , 2004, Inorganic chemistry.

[118]  Roberto Argazzi,et al.  Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine and cyanide ligands , 2004 .

[119]  C. Bignozzi,et al.  Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. , 2005, Journal of the American Chemical Society.

[120]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[121]  Hidetoshi Miura,et al.  High‐Efficiency Organic‐Dye‐ Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness , 2006 .

[122]  P. Ford,et al.  Metal centered ligand field excited states: Their roles in the design and performance of transition metal based photochemical molecular devices , 2011 .

[123]  P. Liska,et al.  Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. , 2004, Inorganic chemistry.

[124]  A. V. Zelewsky,et al.  New Configurationally Stable Chiral Building Blocks for Polynuclear Coordination Compounds: Ru(chiragen[X])Cl2 , 1996 .

[125]  A. J. Frank,et al.  Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy , 1997 .

[126]  Peter C. Searson,et al.  Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells , 2001 .

[127]  J. Moser,et al.  Amphiphilic Ruthenium Sensitizer with 4,4'-Diphosphonic Acid-2,2'-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells , 2004 .

[128]  Anders Hagfeldt,et al.  Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. , 2008, Journal of the American Chemical Society.

[129]  M. Fischer,et al.  Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. , 2009, Angewandte Chemie.

[130]  Eric A. Schiff,et al.  Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2† , 2000 .

[131]  David F. Watson,et al.  Cation effects in nanocrystalline solar cells , 2004 .

[132]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[133]  Michael Gratzel,et al.  Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films. , 2004, Chemistry.

[134]  M. Paoli,et al.  Polymers in dye sensitized solar cells: overview and perspectives , 2004 .

[135]  Annabella Selloni,et al.  Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations , 2000 .

[136]  Tomas Edvinsson,et al.  Intramolecular Charge-Transfer Tuning of Perylenes: Spectroscopic Features and Performance in Dye-Sensitized Solar Cells , 2007 .

[137]  G. Meyer,et al.  Diffusion-Limited Interfacial Electron Transfer with Large Apparent Driving Forces , 1999 .

[138]  Thomas Geiger,et al.  Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. , 2007, Journal of the American Chemical Society.

[139]  P. Ballester,et al.  The role of para-alkyl substituents on meso-phenyl porphyrin sensitised TiO2 solar cells: control of the eTiO2/electrolyte+ recombination reaction , 2008 .

[140]  T. Doi,et al.  Synthesis of a tetrabenzyl-substituted 10-membered cyclic diamide , 2002 .

[141]  G. Koten,et al.  Cyclometalated Organoruthenium Complexes for Application in Dye-Sensitized Solar Cells , 2010 .

[142]  B. W. Erickson,et al.  Molecular-Level Electron Transfer and Excited State Assemblies on Surfaces of Metal Oxides and Glass , 1994 .

[143]  Anders Hagfeldt,et al.  Tuning the HOMO energy levels of organic dyes for dye-sensitized solar cells based on Br-/Br3- electrolytes. , 2010, Chemistry.

[144]  Emilio Palomares,et al.  Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. , 2005, Angewandte Chemie.

[145]  V. Balzani,et al.  Complexes of the Ruthenium(II)-2,2':6',2''-terpyridine Family. Effect of Electron-Accepting and -Donating Substituents on the Photophysical and Electrochemical Properties , 1995 .

[146]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[147]  Nathan S. Lewis,et al.  Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes , 2001 .

[148]  A. Bard,et al.  Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates , 1973 .

[149]  J. Bergquist,et al.  Intramolecular charge separation in a hydrogen bonded tyrosine-ruthenium(II)-naphthalene diimide triad. , 2004, Chemical communications.

[150]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[151]  M. Neuburger,et al.  An element of surprise--efficient copper-functionalized dye-sensitized solar cells. , 2008, Chemical communications.

[152]  Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes , 2000 .

[153]  K. R. Mann,et al.  Convenient synthesis of tris-heteroleptic ruthenium(II) polypyridyl complexes. , 2001, Inorganic chemistry.

[154]  Kazuhiro Sayama,et al.  Efficient eosin y dye-sensitized solar cell containing Br-/Br3- electrolyte. , 2005, The journal of physical chemistry. B.