Automatic model-based semantic object extraction algorithm

Automatic image segmentation and object extraction play an important role in supporting content-based image coding, indexing, and retrieval. However, the low-level visual homogeneity critical (like color, texture, intensity, and so on) for segmentation do not lead to semantic objects directly because a semantic object can contain totally different gray levels, color, or texture. We propose an automatic model-based semantic object extraction algorithm by integrating object seeds with their region constraint graphs (perceptual models). Images are first partitioned into a set of homogeneous regions with accurate boundaries by integrating the results obtained by similarity-based region growing and edge detection procedures. We propose a 1-D fast entropic thresholding technique for determining the thresholds used in region growing and edge detection automatically. The object seeds, which are the intuitive and representative parts of semantic objects, are then distinguished from these homogeneous image regions. A seeded region aggregation procedure is used for merging the adjacent regions of a detected object seed to give a semantic object according to the perceptual model of the object. We focus on semantic human object generation by taking faces as object seeds and using a ratio-based perceptual model.

[1]  Rong Wang,et al.  Image sequence segmentation based on 2D temporal entropic thresholding , 1996, Pattern Recognit. Lett..

[2]  Thomas S. Huang,et al.  Human face detection in a complex background , 1994, Pattern Recognit..

[3]  Vijay V. Raghavan,et al.  Content-Based Image Retrieval Systems - Guest Editors' Introduction , 1995, Computer.

[4]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .

[5]  Tieniu Tan,et al.  Efficient image gradient based vehicle localization , 2000, IEEE Trans. Image Process..

[6]  Jake K. Aggarwal,et al.  The Integration of Image Segmentation Maps using Region and Edge Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Rosalind W. Picard,et al.  Interactive Learning Using a "Society of Models" , 2017, CVPR 1996.

[8]  Shih-Fu Chang,et al.  An integrated approach for content-based video object segmentation and retrieval , 1999, IEEE Trans. Circuits Syst. Video Technol..

[9]  Ferran Marqués,et al.  Region-based representations of image and video: segmentation tools for multimedia services , 1999, IEEE Trans. Circuits Syst. Video Technol..

[10]  Gang Wei,et al.  Face detection for image annotation , 1999, Pattern Recognition Letters.

[11]  Theodosios Pavlidis,et al.  Integrating Region Growing and Edge Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Shi-Kuo Chang,et al.  Iconic Indexing by 2-D Strings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  A. Murat Tekalp,et al.  Temporal video segmentation using unsupervised clustering and semantic object tracking , 1998, J. Electronic Imaging.

[14]  Jiebo Luo,et al.  Face location in wavelet-based video compression for high perceptual quality videoconferencing , 1995, Proceedings., International Conference on Image Processing.

[15]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  King Ngi Ngan,et al.  Face segmentation using skin-color map in videophone applications , 1999, IEEE Trans. Circuits Syst. Video Technol..

[17]  Josef Kittler,et al.  A Performance Measure for Boundary Detection Algorithms , 1996, Comput. Vis. Image Underst..

[18]  Qian Chen,et al.  Face Detection From Color Images Using a Fuzzy Pattern Matching Method , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Clement T. Yu,et al.  Detecting human faces in color images , 1998, Proceedings International Workshop on Multi-Media Database Management Systems (Cat. No.98TB100249).

[20]  Yihong Gong,et al.  Detection of Regions Matching Specified Chromatic Features , 1995, Comput. Vis. Image Underst..

[21]  Ming-Chieh Lee,et al.  Semiautomatic segmentation and tracking of semantic video objects , 1998, IEEE Trans. Circuits Syst. Video Technol..

[22]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[23]  Tom Minka,et al.  Interactive learning with a "society of models" , 1997, Pattern Recognit..

[24]  King Ngi Ngan,et al.  Automatic segmentation of moving objects for video object plane generation , 1998, IEEE Trans. Circuits Syst. Video Technol..

[25]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  A. D. Brink Thresholding of digital images using two-dimensional entropies , 1992, Pattern Recognit..

[27]  Shih-Fu Chang,et al.  Model-based classification of visual information for content-based retrieval , 1998, Electronic Imaging.

[28]  Xiaobo Li,et al.  Adaptive image region-growing , 1994, IEEE Trans. Image Process..

[29]  John F. Haddon,et al.  Image Segmentation by Unifying Region and Boundary Information , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Chung-Lin Huang,et al.  Human facial feature extraction for face interpretation and recognition , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[31]  Sang Uk Lee,et al.  On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques , 1990, Pattern Recognit..

[32]  Eli Saber,et al.  Frontal-view face detection and facial feature extraction using color, shape and symmetry based cost functions , 1998, Pattern Recognit. Lett..

[33]  Hidenori Itoh,et al.  Image Filtering, Edge Detection, and Edge Tracing Using Fuzzy Reasoning , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Fuxi Gan,et al.  Spatiotemporal segmentation based on two-dimensional spatiotemporal entropic thresholding , 1997 .

[35]  Ying Xu,et al.  2D image segmentation using minimum spanning trees , 1997, Image Vis. Comput..

[36]  Wayne H. Wolf,et al.  Semantic image retrieval through human subject segmentation and characterization , 1997, Electronic Imaging.

[37]  Nariman Farvardin,et al.  A perceptually motivated three-component image model-Part I: description of the model , 1995, IEEE Trans. Image Process..