On the existence of Lagrange multipliers in nonlinear programming in Banach spaces

The existence of Lagrange-Karush-Kuhn-Tucker multipliers in differentiable mathematical programming is shown to be a direct consequence of fundamental rules for computing tangent cones. The relationships of these rules with the transversality conditions of differential topology are pointed out. These rules also bear some connections with subdifferential calculus for convex (or tangentially convex [20]) functions.

[1]  C. Ursescu Multifunctions with convex closed graph , 1975 .

[2]  P. Michel Problème des inégalités. Applications à la programmation et au contrôle optimal , 1973 .

[3]  J. Penot Calcul sous-differentiel et optimisation , 1978 .

[4]  Martin Brokate A regularity condition for optimization in Banach spaces: Counter examples , 1980 .

[5]  S. Kurcyusz On the existence and nonexistence of Lagrange multipliers in Banach spaces , 1976 .

[6]  Stephen M. Robinson,et al.  Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..

[7]  V G Bolt'yanskii,et al.  the Method of Tents in the Theory of Extremal Problems , 1975 .

[8]  Jochem Zowe Sandwich theorems for convex operators with values in an ordered vector space , 1978 .

[9]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[10]  J. Zowe,et al.  Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .

[11]  Michel Valadier,et al.  Sous-Différentiabilité de fonctions convexes à valeurs dans un espace vectoriel ordonné. , 1972 .

[12]  F. Clarke Generalized gradients and applications , 1975 .

[13]  A. Haraux How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities , 1977 .

[14]  Sur un probleme de differentiabilite dans les espaces de köthe , 1976 .

[15]  J. Borwein Continuity and Differentiability Properties of Convex Operators , 1982 .

[16]  F. Mignot Contrôle dans les inéquations variationelles elliptiques , 1976 .

[17]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[18]  S. M. Robinson Normed convex processes , 1972 .

[19]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[20]  G. G. Watkins,et al.  Indicating cones and the intersection principle for tangential approximants in abstract multiplier rules , 1981 .

[21]  J. Zowe,et al.  Second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979 .

[22]  R. Bartle,et al.  Mappings between function spaces , 1952 .

[23]  J. Penot On regularity conditions in mathematical programming , 1982 .