Poisson-Boltzmann Methods for Biomolecular Electrostatics

Publisher Summary This chapter presents Poisson-Boltzmann (PB) methods for biomolecular electrostatics. The understanding of electrostatic properties is a basic aspect of the investigation of biomolecular processes. Structures of proteins and other biopolymers are being determined at an increasing rate through structural genomics and other effort. The nonlinear equations obtained from the full PB equation require more specialized techniques, such as Newton methods, to determine the solution to the discretized algebraic equation. The increasing size and number of biomolecular structures have necessitated the development of new parallel finite difference and finite element methods for solving the PB equation. These parallel techniques allow users to leverage supercomputing resources to determine the electrostatic properties of single-structure calculations on large biological systems consisting of millions of atoms. In addition, advances in improving the efficiency of PB force calculations have paved the way for a new era of biomolecular dynamics simulation methods using detailed implicit solvent models. It is anticipated that PB methods will continue to play an important role in computational biology as the study of biological systems grow from macromolecular to cellular scales.

[1]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[3]  B Tidor,et al.  Computation of electrostatic complements to proteins: A case of charge stabilized binding , 1998, Protein science : a publication of the Protein Society.

[4]  Barry Honig,et al.  Electrostatic Potentials near the Surface of DNA: Comparing Theory and Experiment , 1995 .

[5]  Wei Zu Chen,et al.  Protein molecular dynamics with electrostatic force entirely determined by a single Poisson‐Boltzmann calculation , 2002, Proteins.

[6]  T. Bhat,et al.  The Protein Data Bank and the challenge of structural genomics , 2000, Nature Structural Biology.

[7]  J. Andrew McCammon,et al.  Conformational sampling with Poisson–Boltzmann forces and a stochastic dynamics/Monte Carlo method: Application to alanine dipeptide , 1997 .

[8]  A. Elcock,et al.  Computer Simulation of Protein−Protein Interactions , 2001 .

[9]  Michael J. Holst,et al.  The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers , 2001, IBM J. Res. Dev..

[10]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[11]  J L Sussman,et al.  Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs. , 1998, Protein engineering.

[12]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[13]  D. Case,et al.  Generalized born models of macromolecular solvation effects. , 2000, Annual review of physical chemistry.

[14]  D. Heyes,et al.  ALGORITHMS FOR BROWNIAN DYNAMICS SIMULATION , 1998 .

[15]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[16]  Michael J. Holst,et al.  A New Paradigm for Parallel Adaptive Meshing Algorithms , 2000, SIAM J. Sci. Comput..

[17]  David A. Case,et al.  Effective Born radii in the generalized Born approximation: The importance of being perfect , 2002, J. Comput. Chem..

[18]  B Honig,et al.  Salt effects on ligand-DNA binding. Minor groove binding antibiotics. , 1994, Journal of molecular biology.

[19]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation II. Refinement at solvent‐accessible surfaces in biomolecular systems , 2000 .

[20]  Barry Honig,et al.  Electrostatic control of the membrane targeting of C2 domains. , 2002, Molecular cell.

[21]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[22]  H Oschkinat,et al.  Receptor binding properties of four‐helix‐bundle growth factors deduced from electrostatic analysis , 1994, Protein science : a publication of the Protein Society.

[23]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[24]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[25]  A. Elcock Prediction of functionally important residues based solely on the computed energetics of protein structure. , 2001, Journal of molecular biology.

[26]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[27]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[28]  J. Warwicker,et al.  Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. , 1982, Journal of molecular biology.

[29]  J A McCammon,et al.  Electrostatic effects in homeodomain-DNA interactions. , 1997, Journal of molecular biology.

[30]  Bruce Tidor,et al.  Optimization of binding electrostatics: Charge complementarity in the barnase‐barstar protein complex , 2001, Protein science : a publication of the Protein Society.

[31]  Christian Holm,et al.  Electrostatic effects in soft matter and biophysics , 2001 .

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[34]  B. Honig,et al.  Calculation of electrostatic potentials in an enzyme active site , 1987, Nature.

[35]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[36]  Michael K. Gilson,et al.  pKa Shifts in Small Molecules and HIV Protease: Electrostatics and Conformation , 1998 .

[37]  Richard A. Friesner,et al.  Numerical solution of the Poisson–Boltzmann equation using tetrahedral finite‐element meshes , 1997 .

[38]  M. Ondrechen,et al.  THEMATICS: A simple computational predictor of enzyme function from structure , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Andrew McCammon,et al.  Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation , 1993 .

[40]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[41]  R. Netz,et al.  Poisson-Boltzmann theory for membranes with mobile charged lipids and the pH-dependent interaction of a DNA molecule with a membrane. , 2002, Biophysical journal.

[42]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[43]  P. Kollman,et al.  Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding , 2000 .

[44]  L Wang,et al.  Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Herman J. C. Berendsen,et al.  ALGORITHMS FOR BROWNIAN DYNAMICS , 1982 .

[46]  Razif R. Gabdoulline,et al.  Protein interaction property similarity analysis , 2001 .

[47]  J. Andrew McCammon,et al.  Dielectric boundary smoothing in finite difference solutions of the poisson equation: An approach to improve accuracy and convergence , 1991 .

[48]  Richard A. Friesner,et al.  An automatic three‐dimensional finite element mesh generation system for the Poisson–Boltzmann equation , 1997 .

[49]  Ray Luo,et al.  Comparison of generalized born and poisson models: Energetics and dynamics of HIV protease , 2000 .

[50]  P. Taylor,et al.  Acetylcholinesterase inhibition by fasciculin: Crystal structure of the complex , 1995, Cell.

[51]  A. McCoy,et al.  Electrostatic complementarity at protein/protein interfaces. , 1997, Journal of molecular biology.

[52]  B. Honig,et al.  Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis , 1988, Proteins.

[53]  J Novotny,et al.  Electrostatic fields in antibodies and antibody/antigen complexes. , 1992, Progress in biophysics and molecular biology.

[54]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[55]  B Honig,et al.  The electrostatic contribution to DNA base‐stacking interactions , 1992, Biopolymers.

[56]  Barry Honig,et al.  Monovalent and Divalent Salt Effects on Electrostatic Free Energies Defined by the Nonlinear Poisson−Boltzmann Equation: Application to DNA Binding Reactions , 1997 .

[57]  G. Lamm,et al.  Monte Carlo and Poisson–Boltzmann calculations of the fraction of counterions bound to DNA , 1994, Biopolymers.

[58]  S Karlin,et al.  Clusters of charged residues in protein three-dimensional structures. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A J Olson,et al.  Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c. , 1991, The Journal of biological chemistry.

[60]  M. Karplus,et al.  A Comprehensive Analytical Treatment of Continuum Electrostatics , 1996 .

[61]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[62]  G. K. Ackers,et al.  Electrostatic contributions to the energetics of dimer-tetramer assembly in human hemoglobin: pH dependence and effect of specifically bound chloride ions. , 1981, Biochemistry.

[63]  R C Wade,et al.  Brownian dynamics simulation of protein-protein diffusional encounter. , 1998, Methods.

[64]  M. Gilson,et al.  A hierarchical method for generating low‐energy conformers of a protein‐ligand complex , 1998, Proteins.

[65]  T. J. Murphy,et al.  Brownian Motion of N Interacting Particles. I. Extension of the Einstein Diffusion Relation to the N‐Particle Case , 1972 .

[66]  G. Vriend,et al.  Optimizing the hydrogen‐bond network in Poisson–Boltzmann equation‐based pKa calculations , 2001, Proteins.

[67]  M. B. Pinto,et al.  Optimized δ expansion for relativistic nuclear models , 1997, nucl-th/9709049.

[68]  Charles L. Brooks,et al.  Dielectric Continuum Models for Hydration Effects on Peptide Conformational Transitions , 1996 .

[69]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[70]  C. Chothia,et al.  The structure of protein-protein recognition sites. , 1990, The Journal of biological chemistry.

[71]  Barry Honig,et al.  Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification , 1986, Proteins.

[72]  James Andrew McCammon,et al.  Molecular dynamics simulation with a continuum electrostatic model of the solvent , 1995, J. Comput. Chem..

[73]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[74]  R. Wade,et al.  Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity , 1999, Proteins.

[75]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2000 .

[76]  J. A. McCammon,et al.  Calculating electrostatic forces from grid‐calculated potentials , 1990 .

[77]  M L Connolly,et al.  The molecular surface package. , 1993, Journal of molecular graphics.

[78]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[79]  Yutaka Ishikawa,et al.  Scientific Computing in Object-Oriented Parallel Environments , 1997, Lecture Notes in Computer Science.

[80]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[81]  B Honig,et al.  Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. , 2000, Biochemistry.

[82]  Ray Luo,et al.  Accelerated Poisson–Boltzmann calculations for static and dynamic systems , 2002, J. Comput. Chem..

[83]  D. Draper,et al.  The interpretation of Mg(2+) binding isotherms for nucleic acids using Poisson-Boltzmann theory. , 1999, Journal of molecular biology.

[84]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[85]  I. Rouzina,et al.  Use of Poisson-Boltzmann equation to analyze ion binding to DNA. , 1998, Methods in enzymology.

[86]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[87]  J A McCammon,et al.  Theory of biomolecular recognition. , 1998, Current opinion in structural biology.

[88]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..

[89]  H. Berendsen,et al.  A LEAP-FROG ALGORITHM FOR STOCHASTIC DYNAMICS , 1988 .

[90]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[91]  Emil Alexov,et al.  Rapid grid‐based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects , 2002, J. Comput. Chem..

[92]  L. R. Scott,et al.  Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program , 1995 .

[93]  Goran Neshich,et al.  Analysis of the black‐eyed pea trypsin and chymotrypsin inhibitor‐α‐chymotrypsin complex , 1997 .

[94]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[95]  Ann M. Richard,et al.  Quantitative comparison of molecular electrostatic potentials for structure‐activity studies , 1991 .

[96]  M. Karplus,et al.  pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. , 1990, Biochemistry.

[97]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[98]  M. Gilson,et al.  The determinants of pKas in proteins. , 1996, Biochemistry.

[99]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[100]  Jung-Hsin Lin,et al.  Bridging implicit and explicit solvent approaches for membrane electrostatics. , 2002, Biophysical journal.

[101]  An-Suei Yang,et al.  Electrostatic contributions to the binding free energy of the lambdacI repressor to DNA. , 1998, Biophysical journal.

[102]  Rebecca C. Wade,et al.  Effective Charges for Macromolecules in Solvent , 1996 .

[103]  B Tidor,et al.  Charge optimization leads to favorable electrostatic binding free energy. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[104]  J. Mccammon,et al.  Brownian dynamics simulation of diffusion‐influenced bimolecular reactions , 1984 .

[105]  George Vacek,et al.  Advanced initial-guess algorithm for self-consistent-field calculations on organometallic systems , 1999 .

[106]  Ruhong Zhou,et al.  Poisson−Boltzmann Analytical Gradients for Molecular Modeling Calculations , 1999 .

[107]  B Honig,et al.  Salt effects on polyelectrolyte–ligand binding: Comparison of Poisson–Boltzmann, and limiting law/counterion binding models , 1995, Biopolymers.

[108]  Michael J. Holst,et al.  Numerical solution of the nonlinear Poisson–Boltzmann equation: Developing more robust and efficient methods , 1995, J. Comput. Chem..

[109]  B. Montgomery Pettitt,et al.  Numerical Considerations in the Computation of the Electrostatic Free Energy of Interaction within the Poisson-Boltzmann Theory , 1997 .

[110]  William H. Press,et al.  Numerical recipes in C , 2002 .

[111]  B. Dominy,et al.  Development of a generalized Born model parameterization for proteins and nucleic acids , 1999 .

[112]  J. Andrew McCammon,et al.  Parallelization of Poisson—Boltzmann and Brownian Dynamics Calculations , 1995 .

[113]  B Honig,et al.  Electrostatic contributions to protein–protein interactions: Fast energetic filters for docking and their physical basis , 2001, Protein science : a publication of the Protein Society.