The Role of Pseudo Data for Robust Smoothing with Application to Wavelet Regression

We propose a robust curve and surface estimator based on M-type estimators and penalty-based smoothing. This approach also includes an application to wavelet regression. The concept of pseudo data, a transformation of the robust additive model to the one with bounded errors, is used to derive some theoretical properties and also motivate a computational algorithm. The resulting algorithm, termed the es-algorithm, is computationally fast and provides a simple way of choosing the amount of smoothing. Moreover, it is easily described, straightforwardly implemented and can be extended to other wavelet regression settings such as irregularly spaced data and image denoising. Results from a simulation study and real data examples demonstrate the promising empirical properties of the proposed approach. Copyright 2007, Oxford University Press.

[1]  Paul Tseng,et al.  Robust wavelet denoising , 2001, IEEE Trans. Signal Process..

[2]  J. Aubin,et al.  APPLIED FUNCTIONAL ANALYSIS , 1981, The Mathematical Gazette.

[3]  Thomas C. M. Lee,et al.  A self-consistent wavelet method for denoising images with missing pixels , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[4]  Douglas W. Nychka,et al.  Splines as Local Smoothers , 1995 .

[5]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[6]  S. Morgenthaler Robustness in Statistics , 2001 .

[7]  R. Averkamp,et al.  Wavelet thresholding for non-necessarily Gaussian noise: idealism , 2003 .

[8]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[9]  Jianqing Fan,et al.  Regularization of Wavelet Approximations , 2001 .

[10]  A. Antoniadis Smoothing Noisy Data with Tapered Coiflets Series , 1996 .

[11]  I. Johnstone,et al.  Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.

[12]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[13]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[14]  C. Angelini,et al.  Wavelet regression estimation in nonparametric mixed effect models , 2003 .

[15]  Karen Messer,et al.  A Comparison of a Spline Estimate to its Equivalent Kernel Estimate , 1991 .

[16]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[17]  Stefano Alliney,et al.  An algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian estimation , 1994, IEEE Trans. Signal Process..

[18]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[19]  D. Cox Asymptotics for $M$-Type Smoothing Splines , 1983 .

[20]  Elvezio Ronchetti,et al.  Resistant selection of the smoothing parameter for smoothing splines , 2001, Stat. Comput..

[21]  M. C. Jones,et al.  Adaptive M -estimation in nonparametric regression , 1990 .

[22]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[23]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[24]  W. Härdle,et al.  Robust Non-parametric Function Fitting , 1984 .

[25]  A. Balakrishnan Applied Functional Analysis , 1976 .

[26]  Arne Kovac,et al.  Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding , 2000 .

[27]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .