The Role of Pseudo Data for Robust Smoothing with Application to Wavelet Regression
暂无分享,去创建一个
[1] Paul Tseng,et al. Robust wavelet denoising , 2001, IEEE Trans. Signal Process..
[2] J. Aubin,et al. APPLIED FUNCTIONAL ANALYSIS , 1981, The Mathematical Gazette.
[3] Thomas C. M. Lee,et al. A self-consistent wavelet method for denoising images with missing pixels , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[4] Douglas W. Nychka,et al. Splines as Local Smoothers , 1995 .
[5] Paul H. C. Eilers,et al. Flexible smoothing with B-splines and penalties , 1996 .
[6] S. Morgenthaler. Robustness in Statistics , 2001 .
[7] R. Averkamp,et al. Wavelet thresholding for non-necessarily Gaussian noise: idealism , 2003 .
[8] J. Simonoff. Smoothing Methods in Statistics , 1998 .
[9] Jianqing Fan,et al. Regularization of Wavelet Approximations , 2001 .
[10] A. Antoniadis. Smoothing Noisy Data with Tapered Coiflets Series , 1996 .
[11] I. Johnstone,et al. Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.
[12] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[13] M. Wand,et al. Semiparametric Regression: Parametric Regression , 2003 .
[14] C. Angelini,et al. Wavelet regression estimation in nonparametric mixed effect models , 2003 .
[15] Karen Messer,et al. A Comparison of a Spline Estimate to its Equivalent Kernel Estimate , 1991 .
[16] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[17] Stefano Alliney,et al. An algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian estimation , 1994, IEEE Trans. Signal Process..
[18] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[19] D. Cox. Asymptotics for $M$-Type Smoothing Splines , 1983 .
[20] Elvezio Ronchetti,et al. Resistant selection of the smoothing parameter for smoothing splines , 2001, Stat. Comput..
[21] M. C. Jones,et al. Adaptive M -estimation in nonparametric regression , 1990 .
[22] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[23] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[24] W. Härdle,et al. Robust Non-parametric Function Fitting , 1984 .
[25] A. Balakrishnan. Applied Functional Analysis , 1976 .
[26] Arne Kovac,et al. Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding , 2000 .
[27] I. Johnstone,et al. Maximum Entropy and the Nearly Black Object , 1992 .