Exciton-like trap states limit electron mobility in TiO2 nanotubes.

[1]  J. B. Baxter,et al.  Terahertz spectroscopy. , 2011, Analytical chemistry.

[2]  V. Sundström,et al.  Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy. , 2010, Physical review letters.

[3]  P. Kužel,et al.  Ultrafast terahertz photoconductivity in nanocrystalline mesoporous TiO2 films , 2010 .

[4]  M. Johnston,et al.  Ultrafast terahertz conductivity dynamics in mesoporous TiO2: Influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells , 2010 .

[5]  Victor S Batista,et al.  Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. , 2009, Dalton transactions.

[6]  Robert C. Snoeberger,et al.  Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles , 2009 .

[7]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[8]  D. Fischer,et al.  Effect of potassium adsorption on the photochemical properties of titania nanotube arrays , 2009 .

[9]  Krishnan S. Raja,et al.  Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays , 2009 .

[10]  Jinlong Yang,et al.  The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface. , 2009, The Journal of chemical physics.

[11]  V. Sundström,et al.  Far-infrared response of free charge carriers localized in semiconductor nanoparticles , 2009 .

[12]  J. Durrant,et al.  Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[13]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[14]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[15]  P. N. Vishwakarma Ac conductivity in boron doped amorphous carbon films , 2009 .

[16]  Shane Ardo,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[17]  P. Schmuki,et al.  Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[18]  Alison B. Walker,et al.  Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. , 2008, Journal of the American Chemical Society.

[19]  V. K. Mahajan,et al.  Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures , 2008 .

[20]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[21]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[22]  David A. Ritchie,et al.  Terahertz magnetoconductivity of excitons and electrons in quantum cascade structures , 2008 .

[23]  Euan Hendry,et al.  Exciton and electron-hole plasma formation dynamics in ZnO , 2007 .

[24]  Euan Hendry,et al.  Reduction of carrier mobility in semiconductors caused by charge-charge interactions , 2007 .

[25]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[26]  W. Jaegermann,et al.  Synchrotron-Induced Photoelectron Spectroscopy of the Dye-Sensitized Nanocrystalline TiO2/Electrolyte Interface: Band Gap States and Their Interaction with Dye and Solvent Molecules , 2007 .

[27]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[28]  Charles A Schmuttenmaer,et al.  Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. , 2006, The journal of physical chemistry. B.

[29]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[30]  V. K. Mahajan,et al.  Photo-electrochemical generation of hydrogen using hybrid titanium dioxide nanotubular arrays , 2006, SPIE Optics + Photonics.

[31]  C. Grimes,et al.  Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells , 2006 .

[32]  M Bonn,et al.  Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. , 2006, Nano letters.

[33]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[34]  A. J. Frank,et al.  Temperature Dependence of the Electron Diffusion Coefficient in Electrolyte-Filled TiO2 , 2006 .

[35]  Rupert Huber,et al.  Stimulated terahertz emission from intraexcitonic transitions in Cu2O. , 2006, Physical review letters.

[36]  A. J. Frank,et al.  Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .

[37]  Yutaka Murakami,et al.  Defects in Anatase TiO2 Single Crystal Controlled by Heat Treatments , 2004 .

[38]  Charles A Schmuttenmaer,et al.  Exploring dynamics in the far-infrared with terahertz spectroscopy. , 2004, Chemical reviews.

[39]  E. Hendry,et al.  Electron transport in TiO2 probed by THz time-domain spectroscopy , 2004 .

[40]  G. Gruner,et al.  Frequency-dependent conductivity of electron glasses , 2003, cond-mat/0303589.

[41]  D. Norton,et al.  Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition , 2003 .

[42]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[43]  D. Chemla,et al.  Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas , 2003, Nature.

[44]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[45]  Anders Hagfeldt,et al.  Determination of the electronic density of states at a nanostructured TiO2/Ru-dye/electrolyte interface by means of photoelectron spectroscopy , 2002 .

[46]  Matthew C. Beard,et al.  Carrier Localization and Cooling in Dye-Sensitized Nanocrystalline Titanium Dioxide , 2002 .

[47]  M. Fox Optical Properties of Solids , 2010 .

[48]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[49]  N. V. Smith,et al.  Classical generalization of the Drude formula for the optical conductivity , 2001 .

[50]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[51]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[52]  Matthew C. Beard,et al.  Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy , 2000 .

[53]  D. Fitzmaurice,et al.  Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film , 1996 .

[54]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[55]  David Emin,et al.  High mobility n‐type charge carriers in large single crystals of anatase (TiO2) , 1994 .

[56]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[57]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[58]  N. V. Smith Drude theory and the optical properties of liquid mercury , 1968 .