Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.

[1]  B. Henrissat,et al.  Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen , 2015, Proceedings of the National Academy of Sciences.

[2]  R. Hamelin,et al.  The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola , 2014, BMC Genomics.

[3]  V. Barbe,et al.  Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens , 2014, BMC Genomics.

[4]  S. Soubeyrand,et al.  Long-Distance Wind-Dispersal of Spores in a Fungal Plant Pathogen: Estimation of Anisotropic Dispersal Kernels from an Extensive Field Experiment , 2014, PloS one.

[5]  G. Kema,et al.  Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of Mycosphaerella fijiensis, causal agent of the black leaf streak disease of banana. , 2014, Molecular plant pathology.

[6]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[7]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[8]  B. Thomma,et al.  Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen , 2013, Genome research.

[9]  T. Lenormand,et al.  Using neutral cline decay to estimate contemporary dispersal: a generic tool and its application to a major crop pathogen , 2013, Ecology letters.

[10]  Gordon Gremme,et al.  GenomeTools: A Comprehensive Software Library for Efficient Processing of Structured Genome Annotations , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[11]  Wendy S. Schackwitz,et al.  Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens , 2013, PLoS genetics.

[12]  James K. Hane,et al.  Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence , 2013, G3: Genes | Genomes | Genetics.

[13]  G. D. da Silva,et al.  Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis , 2012, BMC Genomics.

[14]  A. Salamov,et al.  Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi , 2012, PLoS pathogens.

[15]  A. Salamov,et al.  The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry , 2012, PLoS genetics.

[16]  A. Rieux,et al.  Recent range expansion and agricultural landscape heterogeneity have only minimal effect on the spatial genetic structure of the plant pathogenic fungus Mycosphaerella fijiensis , 2012, Heredity.

[17]  G. Tuskan,et al.  Characterization of Transposable Elements in the Ectomycorrhizal Fungus Laccaria bicolor , 2012, PloS one.

[18]  Saravanaraj N. Ayyampalayam,et al.  The banana (Musa acuminata) genome and the evolution of monocotyledonous plants , 2012, Nature.

[19]  J. M. Torres,et al.  Differential induction of pathogenesis-related proteins in banana in response to Mycosphaerella fijiensis infection , 2012, European Journal of Plant Pathology.

[20]  M. Freitag,et al.  Epigenetics of Filamentous Fungi , 2012 .

[21]  M. Hood,et al.  Patterns of Repeat-Induced Point Mutation in Transposable Elements of Basidiomycete Fungi , 2012, Genome biology and evolution.

[22]  Paramvir S. Dehal,et al.  Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis , 2011, PLoS genetics.

[23]  Christina A. Cuomo,et al.  Obligate biotrophy features unraveled by the genomic analysis of rust fungi , 2011, Proceedings of the National Academy of Sciences.

[24]  A. Churchill Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. , 2011, Molecular plant pathology.

[25]  Christina A. Cuomo,et al.  Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici , 2011 .

[26]  Manoel T. Souza,et al.  Genome-wide BAC-end sequencing of Musa acuminata DH Pahang reveals further insights into the genome organization of banana , 2011, Tree Genetics & Genomes.

[27]  Jean,et al.  Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations , 2011, Nature communications.

[28]  V. Bus,et al.  Venturia inaequalis: the causal agent of apple scab. , 2011, Molecular plant pathology.

[29]  Pari Skamnioti,et al.  Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism , 2010, Science.

[30]  M. Schierup,et al.  Whole-Genome and Chromosome Evolution Associated with Host Adaptation and Speciation of the Wheat Pathogen Mycosphaerella graminicola , 2010, PLoS genetics.

[31]  James K. Hane,et al.  A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres , 2010, Genome Biology.

[32]  B. te Lintel Hekkert,et al.  Variable number of tandem repeat markers in the genome sequence of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana (Musa spp). , 2010, Genetics and molecular research : GMR.

[33]  J. Carlier,et al.  Black Leaf Streak Disease is challenging the banana industry , 2010 .

[34]  J. Carlier,et al.  Genetic discontinuities and disequilibria in recently established populations of the plant pathogenic fungus Mycosphaerella fijiensis , 2010, Molecular ecology.

[35]  Vincent Lombard,et al.  Genome sequence of the model mushroom Schizophyllum commune , 2010, Nature Biotechnology.

[36]  S. Schornack,et al.  Recent developments in effector biology of filamentous plant pathogens , 2010, Cellular microbiology.

[37]  G. Kema,et al.  Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots , 2010, Proceedings of the National Academy of Sciences.

[38]  P. D. de Wit,et al.  Fungal effector proteins: past, present and future. , 2009, Molecular plant pathology.

[39]  S. Kurtz,et al.  Fine-grained annotation and classification of de novo predicted LTR retrotransposons , 2009, Nucleic acids research.

[40]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[41]  Nansheng Chen,et al.  Using OrthoCluster for the Detection of Synteny Blocks Among Multiple Genomes , 2009, Current protocols in bioinformatics.

[42]  Richard G. F. Visser,et al.  Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola , 2009, PloS one.

[43]  James K. Hane,et al.  RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences , 2008, BMC Bioinformatics.

[44]  L. Pignolet,et al.  Artificial inoculation on plants and banana leaf pieces with Mycosphaerella spp., responsible for Sigatoka leaf spot diseases , 2008 .

[45]  L. Jost GST and its relatives do not measure differentiation , 2008, Molecular ecology.

[46]  J. Simpson,et al.  Construction of a genetic linkage map of the fungal pathogen of banana Mycosphaerella fijiensis, causal agent of black leaf streak disease , 2008, Current Genetics.

[47]  P. Crous,et al.  Multiple gene genealogies and phenotypic characters differentiate several novel species of Mycosphaerella and related anamorphs on banana , 2008, Persoonia.

[48]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[49]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[50]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[51]  S. B. Goodwin Back to basics and beyond: increasing the level of resistance to Septoria tritici blotch in wheat , 2007, Australasian Plant Pathology.

[52]  G. Kema,et al.  Electrophoretic and cytological karyotyping of the foliar wheat pathogen Mycosphaerella graminicola reveals many chromosomes with a large size range. , 2007, Mycologia.

[53]  James K. Hane,et al.  Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen Stagonospora nodorum[W][OA] , 2007, The Plant Cell Online.

[54]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[55]  M. Shaw,et al.  Dynamics of QoI Sensitivity in Mycosphaerella fijiensis in Costa Rica During 2000 to 2003. , 2007, Phytopathology.

[56]  B. Thomma,et al.  The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. , 2007, Molecular plant-microbe interactions : MPMI.

[57]  Beat Keller,et al.  Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. , 2007, Genome research.

[58]  R. ElkinBustamante,et al.  Efecto de Sustratos Foliares Sobre la Sigatoka Negra (Mycosphaerella fijiensis Morelet) en Banano (Musa × paradisiacaL.) y Plátano (Musa acuminata Colla) , 2007 .

[59]  Hua Ling,et al.  Emergence of a new disease as a result of interspecific virulence gene transfer , 2006, Nature Genetics.

[60]  B. Canto-Canché,et al.  Variation in electrophoretic karyotype among Mexican isolates of Mycosphaerella fijiensis , 2006 .

[61]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[62]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[63]  Jonathan D. G. Jones,et al.  Cladosporium Avr2 Inhibits Tomato Rcr3 Protease Required for Cf-2-Dependent Disease Resistance , 2005, Science.

[64]  P. Meirmans,et al.  genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms , 2004 .

[65]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[66]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[67]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[68]  Jodie J. Yin,et al.  A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes , 2004, Genome Biology.

[69]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[70]  A. Krogh,et al.  Reliability measures for membrane protein topology prediction algorithms. , 2003, Journal of molecular biology.

[71]  M. Guzmán,et al.  Black Sigatoka: An Increasing Threat to Banana Cultivation. , 2003, Plant disease.

[72]  T. White,et al.  Estimation of nucleotide substitution rates in Eurotiomycete fungi. , 2002, Molecular biology and evolution.

[73]  H. Sierotzki,et al.  Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. , 2002, Pest management science.

[74]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[75]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[76]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[77]  B. Howlett,et al.  Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. , 2001, Fungal genetics and biology : FG & B.

[78]  G. Kema,et al.  Avirulence in the wheat septoria tritici leaf blotch fungus Mycosphaerella graminicola is controlled by a single locus. , 2000, Molecular plant-microbe interactions : MPMI.

[79]  H. Sierotzki,et al.  Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates , 2000 .

[80]  F. Lapeyre,et al.  Septoria Leaf Spot of Banana: A Newly Discovered Disease Caused by Mycosphaerella eumusae (Anamorph Septoria eumusae). , 2000, Phytopathology.

[81]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[82]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[83]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[84]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[85]  B. Okole,et al.  Selection ofMycosphaerella fijiensis-resistant cell lines from micro-cross sections of banana and plantain , 1997, Plant Cell Reports.

[86]  G. Kema,et al.  Successful crosses and molecular tetrad and progeny analyses demonstrate heterothallism in Mycosphaerella graminicola , 1996, Current Genetics.

[87]  M. Lebrun,et al.  Genetic structure of the global population of banana black leaf streak fungus, Mycosphaerella fijiensis , 1996 .

[88]  M. Zolan Chromosome-length polymorphism in fungi. , 1995, Microbiological reviews.

[89]  H. Y. Steensma,et al.  Genome comparisons in the yeastlike fungal genus Galactomyces Redhead et Malloch. , 1995, International journal of systematic bacteriology.

[90]  M. Gullino,et al.  Electrophoretic karyotype variation among pathotypes of Fusarium oxysporum f.sp. dianthi , 1995 .

[91]  R. A. Fullerton,et al.  Pathogenic variability in Mycosphaerella fijiensis Morelet, cause of black Sigatoka in banana and plantain , 1995 .

[92]  R. Ortiz,et al.  Inheritance of black sigatoka disease resistance in plantain-banana (Musa spp.) hybrids , 1994, Theoretical and Applied Genetics.

[93]  N. Talbot,et al.  Karyotypic Variation within Clonal Lineages of the Rice Blast Fungus, Magnaporthe grisea , 1993, Applied and environmental microbiology.

[94]  C. Caten,et al.  Variation in electrophoretic karyotype between strains of Septoria nodorum , 1991, Molecular and General Genetics MGG.

[95]  M. Homma,et al.  Variation in the electrophoretic karyotype analysed by the assignment of DNA probes in Candida albicans. , 1990, Journal of general microbiology.

[96]  E. Cox,et al.  Electrophoretic karyotype for Dictyostelium discoideum. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[97]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[98]  E. Selker,et al.  A natural case of RIP: degeneration of the DNA sequence in an ancestral tandem duplication , 1989, Molecular and cellular biology.

[99]  C. Goyon,et al.  Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences , 1989, Molecular and cellular biology.

[100]  E. Selker,et al.  Repeat-induced G-C to A-T mutations in Neurospora. , 1989, Science.

[101]  C. Yanofsky,et al.  An electrophoretic karyotype of Neurospora crassa , 1988, Molecular and cellular biology.

[102]  E. Selker,et al.  Rearrangement of duplicated DNA in specialized cells of Neurospora , 1987, Cell.

[103]  M. Nei Molecular Evolutionary Genetics , 1987 .

[104]  P. Broda,et al.  Rapid preparation of DNA from filamentous fungi , 1985 .

[105]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[106]  R. Owen,et al.  Determination of DNA base compositions from melting profiles in dilute buffers , 1969, Biopolymers.

[107]  P. Doty,et al.  Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. , 1962, Journal of molecular biology.

[108]  N. Simmonds Segregations in some diploid bananas , 1953, Journal of Genetics.

[109]  Tarla Divine Nfor,et al.  Evaluation of varietal response to black sigatoka caused by Mycosphaerella fijiensis Morelet in banana nursery , 2011 .

[110]  P. Crous,et al.  Isolation and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana. , 2007, Molecular plant pathology.

[111]  D. Hollomon,et al.  Fungicide Resistance In Crop Pathogens How Can It Be Managed , 2007 .

[112]  S. B. Ware Aspects of sexual reproduction in Mycosphaerella species on wheat and barley : genetic studies on specificity, mapping, and fungicide resistance , 2006 .

[113]  J. Spatafora,et al.  A multigene phylogeny of the Dothideomycetes using four nuclear loci. , 2006, Mycologia.

[114]  BIOINFORMATICS APPLICATIONS NOTE , 2005 .

[115]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[116]  P. Crous,et al.  Mycosphaerella eumusae and its anamorph Pseudocercospora eumusae spp. nov. : causal agent of Eumusae leaf spot disease of banana , 2002 .

[117]  Roeland E. Voorrips,et al.  Software for the calculation of genetic linkage maps , 2001 .

[118]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[119]  T. Sutton,et al.  Sensitivity of Mycosphaerella fijiensis, Causal Agent of Black Sigatoka of Banana, to Propiconazole. , 1997, Phytopathology.

[120]  O. Eriksson,et al.  Supraordinal taxa of Ascomycota , 1997 .

[121]  M. Shaw,et al.  Histology of the pathogenesis of Mycosphaerella graminicola in wheat , 1996 .

[122]  X. Mourichon,et al.  Study of host-parasite interactions in susceptible and resistant banana inoculated with Cercospora fijiensis pathogen of Black Leaf Streak Disease , 1993 .

[123]  Christina A. Cuomo,et al.  Source (or Part of the following Source): Type Article Title Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium Author(s) , 2022 .