Thermal behavior and stability of room‐temperature continuous AlxGa1−xAs‐GaAs quantum well heterostructure lasers grown on Si

Data are presented on the thermal characteristics of p‐n AlxGa1−xAs‐GaAs quantum well heterostructure (QWH) diode lasers grown on Si substrates. Continuous 300‐K operation for over 10 h is demonstrated for lasers mounted with the junction side away from the heat sink (‘‘junction‐up’’) and the heat dissipated through the Si substrate. ‘‘Junction‐up’’ diodes that are grown on Si substrates have measured thermal impedances that are 38% lower than those grown on GaAs substrates, with further reductions possible. Thermal impedance data on ‘‘junction‐down’’ diodes are presented for comparison. Measured values are consistent with calculated values for these structures. Low sensitivity of the lasing threshold current to temperature is also observed, as is typical for QWH lasers, with T0 values as high as 338 °C.

[1]  I. Hayashi,et al.  GaAs–AlxGa1−xAs Double Heterostructure Injection Lasers , 1971 .

[2]  E. Duda,et al.  Thermal resistance and temperature distribution in double-heterostructure lasers: Calculations and experimental results , 1979 .

[3]  R. A. Logan,et al.  Low-threshold high-efficiency AlGaAs-GaAs double-heterostructure injection lasers grown on Si substrates by metalorganic chemical vapor deposition , 1987 .

[4]  B. W. Hakki,et al.  Degradation of CW GaAs double-heterojunction lasers at 300 K , 1973 .

[5]  Karl Hess,et al.  Temperature dependence of threshold current for quantum‐well AlxGa1−xAs‐GaAs heterostructure laser diodes , 1980 .

[6]  C. D. Thurmond The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs , and GaP , 1975 .

[7]  A Yariv,et al.  Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature. , 1987, Optics letters.

[8]  Hisashi Shichijo,et al.  Stability of 300 K continuous operation of p‐n AlxGa1−xAs‐GaAs quantum well lasers grown on Si , 1987 .

[9]  T. H. Windhorn,et al.  Room‐temperature operation of GaAs/AlGaAs diode lasers fabricated on a monolithic GaAs/Si substrate , 1985 .

[10]  P. Petroff,et al.  Defect structure introduced during operation of heterojunction GaAs lasers , 1973 .

[11]  M. Ludowise Metalorganic chemical vapor deposition of III‐V semiconductors , 1985 .

[12]  N. Holonyak,et al.  Continuous (300 K) photopumped laser operation of AlxGa1−xAs‐GaAs quantum well heterostructures grown on strained‐layer GaAs on Si , 1987 .

[13]  W. Joyce,et al.  Thermal resistance of heterostructure lasers , 1975 .

[14]  J. Manning,et al.  Thermal impedance of diode lasers: Comparison of experimental methods and a theoretical model , 1981 .

[15]  P. D. Maycock,et al.  Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys , 1967 .

[16]  Karl Hess,et al.  Temperature dependence of threshold current for a quantum-well heterostructure laser , 1980 .

[17]  Martin A. Afromowitz,et al.  Thermal conductivity of Ga1−xAlxAs alloys , 1973 .

[18]  T. Paoli,et al.  A new technique for measuring the thermal impedance of junction lasers , 1975, IEEE Journal of Quantum Electronics.

[19]  T. H. Windhorn,et al.  AlGaAs double‐heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate , 1984 .

[20]  N. Holonyak,et al.  VB-6 continuous room-temperature laser operation of AlxGa1-xAs-GaAs quantum well heterostructures grown on Si , 1987, IEEE Transactions on Electron Devices.

[21]  D. Shaw Epitaxial GaAs on Si: Progress and Potential Applications , 1987 .

[22]  Hisashi Shichijo,et al.  Room‐temperature continuous operation of p‐n AlxGa1−xAs‐GaAs quantum well heterostructure lasers grown on Si , 1987 .

[23]  J D Crow,et al.  Thermal performance and limitations of silicon-substrate packaged GaAs laser arrays. , 1978, Applied optics.

[24]  D. Marple,et al.  Refractive Index of GaAs , 1964 .