Range restriction, climate variability and human‐related risks imperil lizards world‐wide

[1]  Jonathan D. Rosenblatt,et al.  Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny , 2022, PLoS biology.

[2]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[3]  R. Tingley,et al.  Correlates of extinction risk in Australian squamate reptiles , 2021, Journal of Biogeography.

[4]  Chuanwu Chen,et al.  Biological and extrinsic correlates of extinction risk in Chinese lizards , 2021, Current Zoology.

[5]  R. Tingley,et al.  Conservation status of the world's skinks (Scincidae): Taxonomic and geographic patterns in extinction risk , 2021 .

[6]  W. Jetz,et al.  Shortfalls and opportunities in terrestrial vertebrate species discovery , 2020, Nature Ecology & Evolution.

[7]  Felix May,et al.  Ecosystem decay exacerbates biodiversity loss with habitat loss , 2020, Nature.

[8]  D. Miles Can Morphology Predict the Conservation Status of Iguanian Lizards? , 2020, Integrative and comparative biology.

[9]  A. Bauer,et al.  The global diversity and distribution of lizard clutch sizes , 2020, Global Ecology and Biogeography.

[10]  P. Raven,et al.  Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction , 2020, Proceedings of the National Academy of Sciences.

[11]  M. Cardillo,et al.  Alternative pathways to diversity across ecologically distinct lizard radiations , 2020 .

[12]  Stewart L. Macdonald,et al.  Geographic and taxonomic patterns of extinction risk in Australian squamates , 2019, Biological Conservation.

[13]  Shai Meiri,et al.  Traits of lizards of the world: Variation around a successful evolutionary design , 2018, Global Ecology and Biogeography.

[14]  P. Ding,et al.  Ecological correlates of extinction risk in Chinese birds , 2018 .

[15]  P. Uetz,et al.  Extinct, obscure or imaginary: The lizard species with the smallest ranges , 2017, Diversity and Distributions.

[16]  Peter Uetz,et al.  The global distribution of tetrapods reveals a need for targeted reptile conservation , 2017, Nature Ecology & Evolution.

[17]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[18]  H. Possingham,et al.  Limitations and trade‐offs in the use of species distribution maps for protected area planning , 2017 .

[19]  R. Shine,et al.  Drivers of Extinction Risk in Terrestrial Vertebrates , 2017 .

[20]  R. Tingley,et al.  Addressing knowledge gaps in reptile conservation , 2016 .

[21]  T. Mott,et al.  In the depths of obscurity: Knowledge gaps and extinction risk of Brazilian worm lizards (Squamata, Amphisbaenidae) , 2016 .

[22]  K. Beard,et al.  Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status , 2016 .

[23]  Shai Meiri,et al.  Biases in the current knowledge of threat status in lizards, and bridging the ‘assessment gap’ , 2016 .

[24]  M. Böhm,et al.  Hot and bothered : using trait-based approaches to assess climate change vulnerability in 1 reptiles 2 , 2016 .

[25]  Yuval Itescu,et al.  Late Quaternary reptile extinctions: size matters, insularity dominates , 2016 .

[26]  Kendall R. Jones,et al.  Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation , 2016, Nature Communications.

[27]  B. Collen,et al.  Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size , 2016 .

[28]  R. Hitchmough,et al.  Current challenges and future directions in lizard conservation in New Zealand , 2016 .

[29]  E. Hadly,et al.  Extinction biases in Quaternary Caribbean lizards , 2015 .

[30]  B. Cade,et al.  Model averaging and muddled multimodel inferences. , 2015, Ecology.

[31]  L. Santini,et al.  Human pressures predict species’ geographic range size better than biological traits , 2015, Global change biology.

[32]  N. Holmes,et al.  The Importance of Islands for the Protection of Biological and Linguistic Diversity , 2015 .

[33]  Jason L. Brown,et al.  Extinction Risks and the Conservation of Madagascar's Reptiles , 2014, PloS one.

[34]  R. Tingley,et al.  Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards , 2013 .

[35]  A. S. Lobo,et al.  The conservation status of the world's reptiles , 2013 .

[36]  E. Meijaard,et al.  Are comparative studies of extinction risk useful for conservation? , 2012, Trends in ecology & evolution.

[37]  C. Orme,et al.  Understanding global patterns in amphibian geographic range size: does Rapoport rule? , 2012 .

[38]  V. Nijman,et al.  Over-exploitation and illegal trade of reptiles in Indonesia , 2012 .

[39]  José A. Díaz,et al.  A comparative study of clutch size, range size, and the conservation status of island vs. mainland lacertid lizards , 2010 .

[40]  Shai Meiri Length-weight allometries in lizards , 2010 .

[41]  M. Massot,et al.  Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches , 2010, Science.

[42]  Kate E. Jones,et al.  The predictability of extinction: biological and external correlates of decline in mammals , 2008, Proceedings of the Royal Society B: Biological Sciences.

[43]  Lian Pin Koh,et al.  Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline , 2008, PloS one.

[44]  C. Tracy,et al.  Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[46]  J. L. Gittleman,et al.  Predicting extinction risk in declining species , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  I. Owens,et al.  Variation in extinction risk among birds: chance or evolutionary predisposition? , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.