Latent single-index models for ordinal data

We propose a latent semi-parametric model for ordinal data in which the single-index model is used to evaluate the effects of the latent covariates on the latent response. We develop a Bayesian sampling-based method with free-knot splines to analyze the proposed model. As the index may vary from minus infinity to plus infinity, the traditional spline that is defined on a finite interval cannot be applied directly to approximate the unknown link function. We consider a modified version to address this problem by first transforming the index into the unit interval via a continuously cumulative distribution function and then constructing the spline bases on the unit interval. To obtain a rapidly convergent algorithm, we make use of the partial collapse and parameter expansion and reparameterization techniques, improve the movement step of Bayesian splines with free knots so that all the knots can be relocated each time instead of only one knot, and design a generalized Gibbs step. We check the performance of the proposed model and estimation method by a simulation study and apply them to analyze a real dataset.

[1]  Thomas M. Stoker Consistent estimation of scaled coefficients , 2011 .

[2]  Jun S. Liu,et al.  Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation , 2000 .

[3]  D. V. van Dyk,et al.  Partially Collapsed Gibbs Samplers , 2008 .

[4]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[5]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[6]  Hai-Bin Wang,et al.  Bayesian analysis of generalized partially linear single-index models , 2013, Comput. Stat. Data Anal..

[7]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[8]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[9]  Xiangnan Feng,et al.  Latent variable models with nonparametric interaction effects of latent variables , 2014, Statistics in medicine.

[10]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[11]  Hai-Bin Wang,et al.  Latent variable models with ordinal categorical covariates , 2012, Stat. Comput..

[12]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[13]  Gerd Ronning,et al.  Efficient Estimation of Ordered Probit Models , 1996 .

[14]  C. Biller Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models , 2000 .

[15]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[16]  Thomas M. Stoker,et al.  Investigating Smooth Multiple Regression by the Method of Average Derivatives , 2015 .

[17]  B. Mallick,et al.  Generalized Nonlinear Modeling With Multivariate Free-Knot Regression Splines , 2003 .

[18]  Anestis Antoniadis,et al.  BAYESIAN ESTIMATION IN SINGLE-INDEX MODELS , 2004 .

[19]  S. Chib,et al.  Additive cubic spline regression with Dirichlet process mixture errors , 2010 .

[20]  Jian Qing Shi,et al.  Bayesian sampling‐based approach for factor analysis models with continuous and polytomous data , 1998 .

[21]  Eric T. Bradlow,et al.  A hierarchical latent variable model for ordinal data from a customer satisfaction survey with no answer responses , 1999 .

[22]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[23]  Bruce W. Schmeiser,et al.  General Hit-and-Run Monte Carlo sampling for evaluating multidimensional integrals , 1996, Oper. Res. Lett..

[24]  B. Mallick,et al.  Bayesian regression with multivariate linear splines , 2001 .

[25]  Hai-Bin Wang,et al.  Bayesian estimation and variable selection for single index models , 2009, Comput. Stat. Data Anal..

[26]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[27]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[28]  T. Johnson Generalized linear models with ordinally-observed covariates. , 2006, The British journal of mathematical and statistical psychology.

[29]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[30]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[31]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[32]  Mary J. Lindstrom,et al.  Bayesian estimation of free-knot splines using reversible jumps , 2002, Comput. Stat. Data Anal..

[33]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[34]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[35]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[36]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[37]  S Y Lee,et al.  Latent variable models with mixed continuous and polytomous data , 2001, Biometrics.

[38]  Robert B. Gramacy,et al.  Bayesian quantile regression for single-index models , 2011, Stat. Comput..

[39]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[40]  Martin Kukuk,et al.  Indirect estimation of (latent) linear models with ordinal regressors A Monte Carlo study and some empirical illustrations , 2002 .

[41]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[42]  Wai-Yin Poon,et al.  Multivariate partially linear single-index models: Bayesian analysis , 2014 .

[43]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[44]  Mary Kathryn Cowles,et al.  Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models , 1996, Stat. Comput..

[45]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .